Oxford Revise AQA A Level Physics | Chapter P25 answers

P25: Rotational dynamics

Question

Answers

Extra information

Mark

AO

Spec reference

01.1

\(
\begin{array}{lll}
\textrm{100 revolutions per minute} & = & 100 \times \frac{{2\pi }}{60}\\
& = & 10.5\textrm{ rad s}^{-1}\\
\end{array}
\) \(\Delta t = \frac{{\Delta \omega }}{a} = \frac{{10.5}}{{2.00}} = 5.24\textrm{ s}\)

Conversion to rad s–1

Answer

1

1

2

3.11.1.3

01.2

Find the moment of inertia of the wheel

Use torque = moment of inertial  ×  angular acceleration to find torque

Use torque = force  ×  distance (radius of wheel) to find force

Use of T = Ia

Use of T = Fr

1

1

3

3.11.1.4

01.3

\(
\begin{array}{lll}
\omega _2^{2} & = & \omega _1^{2} + 2a\theta\\
\theta & = & \frac{{\omega _2^2 – \omega _1^2}}{{2a}}\\
& = & \frac{{0 – {{10.5}^2}}}{{2 \times 2.00}}\\
& = & 27.4\textrm{ rad}\\
& = & \frac{{27.4}}{{2\pi }}\\
& = & 4.36\textrm{ revolutions}\\
\end{array}
\)

Substitution

Answer

Conversion to revolutions

1

1

1

2

3.11.1.3

01.4

Does not start at zero

Gradient increases

1

1

3

3.11.1.3

01.5

The graph in part 01.1 would be linear

The deceleration is constant

1

1

3

3.11.1.3

02.1

Correct suggestion, e.g.

Engineers may apply torques by firing engines, and they need the moment of inertia to work out the angular acceleration

1

3

3.11.1.4

02.2

A column with t2

D / m

t2 / s2

0.2

0.3025

0.4

0.6724

0.6

0.9801

0.8

1.3924

1.0

1.7689

\(
\begin{array}{l}
D = \frac{1}{2}\ at^{2}\textrm{, so the gradient} = \frac{1}{2}a\\
\textrm{Gradient }= \frac{0.8\,\rm{m}}{1.4\,{\rm{s}^2}} = 5.7\ \rm{m\ s}^{-2}\\
\end{array}
\)

Either use of t2 or \(\sqrt D \)

Values calculated

Points plotted, straight line of best fit

Axes correct and labelled with units

Correct use of equation

Answer

1

1

1

1

1

1

2

3.11.1.3

02.3

\(
\begin{array}{lll}
I & = & m{R^2}\left( {\frac{g}{a} – 1} \right)\\
I & = & 0.1 \times {0.032^2}\left( {\frac{{9.8}}{{5.7}} – 1} \right)\\
& = & 7.3 \times 10^{-5}\textrm{ kg m}^{2}\\
\end{array}
\)

Substitution

Answer

1

1

2

3.11.1.1

02.4

Correct suggestion and explanation, e.g.

The moment of inertia of the pulley is not taken into account

This means the calculated value is larger than it should be

2

3

3.11.1.3

03.1

To smooth out the torque produced by the crankshaft, to ensure that a constant torque/speed is produced

1

1

3.11.1.2

03.2

No external torque is exerted on the system

1

1

3.11.1.5

03.3

\(
\begin{array}{l}
{I_1}{\omega _{1{\rm{i}}}} + {I_2}{\omega _{2{\rm{i}}}} = \left( {{I_1} + {I_2}} \right){\omega _{\rm{f}}}\\
0.21\ \times\ 530 + 0.15\ \times\ 240 = (0.21 + 0.15)\ \omega\\
\omega = 409\textrm{ rad s}^{-1} (409.2)\\
\end{array}
\)

Use of conservation of angular moment (explicit or implied)

Answer

1

1

2

3.11.1.5

03.4

\(
\begin{array}{lll}
\textrm{Impulse} & = & \textrm{change in angular momentum}\\
& = & I\Delta \omega\\
& = & 0.36\ \times\ 0.1\ \times\ 410\\
& = & 14.8\textrm{ kg m}^{2}\textrm{ rad s}^{-1}\\
\end{array}
\)

Assuming torque is constant

Substitution

Answer

Unit

Assumption

1

1

1

1

2

2

1

3.11.1.5

04.1

\(\textrm{Angular velocity } = \frac{\rm{linear\ velocity}}{r}\)

Or linear velocity = angular velocity × r

1

1

3.11.1.4

04.2

\(
\begin{array}{lll}
\textrm{2200 revolution per minute} & = & 2200\ \times\ \frac{2\pi}{60}\\
& = & 1.38\,\times\ 10^{4}\textrm{ rad s}^{-1}\\
\end{array}

[latex]
\begin{array}{lll}
\textrm{Linear velocity }v & = & \omega r\\
& = & 1.38\ \times\ 10^{4} \times 0.125\textrm{ m}\\
& = & 1.73\ \times\ 10^{3}\ \rm{m\ s}^{-1}\\
\end{array}
\)

Substitution

Answer

1

1

2

3.11.1.4

04.3

Kinetic energy = \(\frac{1}{2}m{v^2}\)

\(
\begin{array}{lll}
\textrm{Power} & = & \frac{{{\rm{energy}}}}{{{\rm{time}}}}\\
& = & \frac{{\frac{1}{2} \times 1.3 \times {{10}^{-3}} \times {{\left( {1.73 \times {{10}^3}} \right)}^2}}}{{0.25}}\\
& = & 7.76\ \times\ 10^{3}\textrm{ W}\\
\end{array}
\)

Use of data from diagram

Answer

1

1

3

3.11.1.2

04.4

\(
\begin{array}{lll}
\textrm{Moment of inertia} & = & \frac{1}{2}M{R^2}\\
& =& \frac{1}{2} \times\ 1.3\ \times\ 10^{-3}\ \times\ (0.125)^{2}\\
= 1.02\ \times\ 10^{-5}\textrm{ kg m}^{2}\\
= 1.0 \times\ 10^{-5}\textrm{ kg m}^{2}\\
\end{array}
\)

Substitution

Answer

1

1

2

3.11.1

04.5

\(
\begin{array}{lll}
\textrm{Torque exerted on mass} & = & F \times d\\
& = & 6.50  \times  0.125 = 0.813\textrm{ N m}\\
\end{array}
\)

Power = T × ω

ω is reduced by \(\frac{1}{{0.813}}\) = 1.23 rad s–1

Substitution

Answer

1

1

3

3.11.1.5

3.11.1.6

05.1

\(
\begin{array}{lll}
I & = & \frac{1}{2} \times\ 50\textrm{ kg}\ \times\ (0.3\textrm{ m})^{2}\\
& = & 2.25\textrm{ kg m}^{2}\\
& = & 2.3\textrm{ kg m}^{2}\\
\end{array}
\)

1

2

3.11.1.1

05.2

\(
\begin{array}{lll}
I_{\textrm{hand}} & = & mR^2\\
& = & 4\textrm{ kg}\ \times\ (0.8\textrm{ m})^{2}\\
& = & 2.56\textrm{ kg m}^{2}\\
\textrm{Total }I & = & I_{\textrm{cylinder}} + 2 \times I_{\textrm{hand}}\\
& = & (2.25 + 2.56 + 2.56)\textrm{ kg m}^{2}\\
& = & 7.37\textrm{ kg m}^{2}\\
& = & 7.4\textrm{ kg m}^{2}\\
\end{array}
\)

Use of equation

Calculation for 2 ‘hands’

Total answer

Allow 7.5 kg m2

1

1

1

2

3.11.1.1

05.3

\(
\begin{array}{l}
L = I\omega\\
= 7.37\textrm{ kg m}^{2}\ \times\ 2.2\textrm{ rad s}^{-1}\\
= 16.2\textrm{ kg m}^{2}\textrm{ s}^{-1}\\
= 16\textrm{ kg m}^{2}\textrm{ s}^{-1}\\
\end{array}
\)

1

1

2

3.11.1.5

05.4

Moment of inertia decreases

Angular momentum stays the same/is conserved

The angular speed increases

Assuming no external torques act

Do not accept ‘external force’

1

1

1

1

3

3.11.1.5

05.5

\(
\begin{array}{l}
T\Delta t = \Delta (I\omega)\\
T = \frac{{\Delta \left( {I\omega} \right)}}{{\Delta t}}\\
= \frac {\{ \rm{answer\ to\ }\textbf{05.3} \} \rm{\ kg\ m^{2}\rm{\ rad\ s}}^{-1}}{24\textrm{ s}}\\
= 0.67\textrm{ N m (if used L }= 16)\\
= 0.68\textrm{ N m (if used L }= 16.2)\\
\end{array}
\)

Substitution

Answer

1

1

2

3.11.1.5

06.1

\(
\begin{array}{lll}
\textrm{Rotational kinetic energy} & = & \frac{1}{2}I\omega ^2\\
& = & \frac{1}{2}MR^2 \times \omega\\
& = & 0.5 \times 15 \times 0.2^{2} \times 1920^{2}\\
& = & 1.11 \times 10^{6}\textrm{ J}\\
\end{array}
\)

Substitution

Answer

1

1

2

3.11.1.2

06.2

Change in Ek of the car = gain in rotational Ek of the flywheel

\(
\begin{array}{lll}
\textrm{Final }E_k\textrm{ of the car} & = & \textrm{initial }E_{k}-\textrm{rotational }E_{k}\textrm{ gained}\\
& = & \frac{1}{2}\ mv_{i}^{2} – 1.11\ldots \times 10^{6}\textrm{ J}\\
& = & 0.5 \times 660 \times 67^{2} – 1.11\ldots \times 10^{6}\textrm{ J}\\
& = & 0.37137 \times 10^{6}\textrm{ J}\\
\end{array}
\) \(
\begin{array}{lll}
\rm{Final\ speed\ of\ the\ car} & = & \sqrt\frac{2 \times 0.37137 \times 10^{6}}{660}\\
& = & 33.546\ldots \ \rm{m\ s}^{-1}\\
\end{array}
\) \(
\begin{array}{lll}
\textrm{Deceleration} & = & \frac{\Delta v}{\Delta t}\\
& = & \frac{33.546 \ldots\ – 67}{3.3}\\
& = & -10\ \rm{m\ s}^{-2}\\
\end{array}
\)

Explicit or implicit

Change in energy

Final speed

ignore minus sign

1

1

1

1

3

3.11.1

3.4.1.3

06.3

Correct suggestion, e.g.

The flywheel axle could be connected to a generator that produces a pd

A capacitor connected across the generator would charge up

Link to flywheel

Use of generator

1

1

3

3.7.5.4

06.4

Energy stored in a capacitor = \(\frac{1}{2}\)CV 2

0.5  ×  1.0  ×  V 2 = 1.11…  ×  106 J

V = 1490 V

This is a very high voltage

Substitution

Answer

Comment

1

1

1

2

3.7.4.3

06.5

At very high pd, there is a large field strength/the dielectric can break down

The capacitor conducts/a large current flows/risk of wire melting/fire

1

1

3

3.7.4.2

07.1

An ionised gas consists of charged particles

If the particles are moving, there is a force on them F = BIl / magnetic field to not effect stationary charges

1

1

3

3.7.5.1

07.2

Moment of inertia of each wheel = I = \(\frac{1}{2}\) Mr2

= 7 846 875 = 7.85  ×  106 kg m2

Energy stored by one wheel when spinning at 24 rad s–1

\(
\begin{array}{l}
= \frac{1}{2} I\omega^{2}\\
= 0.5 \times 7.85 \times 10^{6} \times 24^{2}\\
= 2.259\ldots \times 10^{9}\textrm{ J}\\
\end{array}
\) \(\textrm{Power } = \frac{\textrm{energy}}{\textrm{time}} = \frac{2.25 \times 10^9}{4.2} = 538 \times 10^{6}\textrm{ W}\)

So two wheels are need to supply 1000 MW

MoI calculated

Energy calculated

Power needed related to 2 wheels

1

1

1

3

3.11.1.6

07.3

As the flywheel spins, there is stress in the wheel because it requires a force to continue to keep the material of the wheel moving in a circle

The force is provided by the forces between atoms/microstructures, and, if there are imperfections, the force may not be sufficient and the wheel will fly apart

Reference to circular motion and (centripetal force)

Reference to forces

1

1

3

3.6.1.1

07.4

\(
\begin{array}{l}
\textrm{Resistance } = \frac{\rho L}{A}\\
\textrm{Energy dissipated } = I^2 \ Rt = \frac{I^2 \rho Lt}{A} (\rho = \textrm{resistivity})\\
\textrm{thermal energy gained } = mc\Delta \theta = dLAc\Delta \theta \ (d = \textrm{density})\\
{I^2}t\,\frac{\rho L}{A} = dLAc\Delta \theta \Rightarrow A = \sqrt{\frac{I^2 t\rho}{d\Delta \theta}}\\
A = 0.226\ldots\textrm{ m}^{2}\\
\textrm{diameter } = 0.54\textrm{ m}\\
\end{array}
\)

OR

\(
\begin{array}{lll}
& = & I^2 t \frac{\rho RL}{A} = \left( 51 \times 10^{6} \right)^{2} \times\ 4.2 \times \frac{1.72 \times 10^{-8} \times 1\textrm{ m}}{A}\\
& = & \frac{1.87 \times 10^8}{A}\\
\end{array}
\) \(
\begin{array}{lll}
E & = & mc \Delta \theta = dALc \Delta \theta \\
& = & 8960\ A \times 1 \times 385 \times (1085 – 20)\\
& = & 3.67 \times 10^{9} \times A\\
\end{array}
\) \(3.67 \times 10^{9} \times A = \frac{1.87 \times 10^8}{A}\) \(
\begin{array}{lll}
{A^2} & = & \frac{1.87 \times 10^{8}}{3.67 \times 10^{9}}\\
& = & 0.05095\textrm{ m}^{2}\\
A & = & 0.226\ldots\textrm{ m}^{2}\\
\end{array}
\)

Diameter = 0.54 m

This is extremely large, so the coils must be continuously cooled

Manipulation of equations for resistance, density, and specific heat capacity

Use of change of temperature from room temperature

Substitution and calculation or algebraic manipulation

Answer for area

Answer for diameter

Comment

1

1

1

1

1

1

3

3.5.1.3

3.4.2.1

3.6.2.1

08.1

The centre of mass is the point through which the mass of the object appears to act, but the moment of inertia is a body’s tendency to resist angular acceleration

Both needed for mark

1

1

3.4.1.2

3.11.1

08.2

There is a torque/force acting at a distance from the pivot to the centre of mass, which turns the ruler about the pivot

The torque decreases to zero when the ruler is vertical, but continues because it has angular momentum

As it moves up from being vertical, the torque opposes the motion, so the angular velocity decreases to zero (momentarily)

Do not accept energy argument

1

1

1

2

3.11.1.4

08.3

Torque is analogous to force, and angle is analogous to distance

Area under a force–distance graph is work done, so area under the torque–distance graph is work done

1

1

1

3.11.1.3

08.4

\( mgh = \frac{1}{2} I\omega^{2}\)

The centre of mass of the ruler is raised through a vertical height of 15 cm

\(
\begin{array}{lll}
\textrm{Moment of inertia} & = & \frac{1}{3} \times 0.065 \times 0.3^{2}\\
& = & 0.00195\textrm{ kg m}^{2}\\
\end{array}
\) \(
\begin{array}{lll}
\omega ^2 & = & \frac{mgh}{\frac{1}{2}I}\\
\therefore \omega & = & 9.9\textrm{ rad s}^{-1}\\
\end{array}
\)

Conservation of energy

Moment of inertia

Answer

1

1

1

3

3.4.1.8

3.11.1.2

08.5

Angular momentum before = angular momentum after

Angular momentum of ball = mR2  × \(\frac{v}{R}\) = mvR

0.00195  ×  9.9 = 0.005  ×  2.5  ×  0.3 + 0.00195  ×  ωf

ωf = 8.0 (7.98) rad s–1

Conservation of angular momentum

Use of mR2 for ball

Answer

1

1

1

3

3.11.1.1

3.11.1.5

08.6

Angular kinetic energy has been reduced by \({\left( {\frac{{0.17}}{{0.34}}} \right)^2}\),

so the height would be \( \approx 65\% \) × the previous height, so yes the difference in height would be noticeable

Use of energy

Answer

1

1

3

3.4.1.8

3.11.1.2

Skills box answers

Question

Answer

1

In 12 hours the hour hand will rotate through 2π rad.

\(\omega = \frac{{2\pi }}{{\left( {12 \times 60 \times 60} \right)}} = 1.5 \times {10^{-4}}\,{\rm{rad}}\ {{\rm{s}}^{-1}}\)

2

Angular displacement in 1 minute = 23 000 × 2π = 46 000 π rad.

\(\omega = \frac{{{\rm{46\;000}}\pi }}{60} = {2}{\rm{.4\ \times\ \;1}}{{0}^{3}}{\rm{\;rad\;}}{{\rm{s}}^{-1}}\)

3

\({\rm{Linear\;displacement}}\;s\;{\rm{\ =\ \;200\;m;\;}}r = \frac{50}{{{\rm{2\;cm}}}}{\rm{\ =\ \;0}}{\rm{.25\;m;\;}}t = {\rm{20\;s}}\) \({\rm{Angular}}\,{\rm{displacement}} = \frac{s}{r} = \frac{200}{{0.25}} = 800\ {\rm{rad}}\) \(\omega = \frac{800}{20} = 40\ {\rm{rad}}\ {{\rm{s}}^{-1}}\)
Loading...