Oxford Revise AQA A Level Physics | Chapter P10 answers

Question

Answers

Extra information

Mark

AO

Spec reference

01.1

Solar cell in series with ammeter and variable resistor

Voltmeter in parallel with variable resistor (or solar cell)

1

1

3.5.1.6

AO1

01.2

Allow sensible suggestions:

Control light intensity

  • Use of lamp with shielding round solar cell (black card)

Control of temperature

  • Turn light on for short periods when taking reading and leave to cool
  • Place a clear container with water between the solar cell and light source

1 mark for how to control light intensity

1 mark for control of temperature

1

1

PS1.1

AO3

01.3

Change the resistance of the circuit using the variable resistance and record a series of potential difference and current readings

Plot a graph of p.d. against current

The y-intercept is the e.m.f

The gradient is the (negative) internal resistance

1

1

1

1

3.5.1.6

AO2

01.4

The e.m.f depends on the light intensity/temperature so they can only quote a value for average conditions

Any sensible suggestion

1

3.5.1.6

AO3

01.5

Use of ε = I (R + r) or recognising ε = 8.2 V

ε = IR + Ir = V + Ir

8.2 = 5.5 + (0.1 × r)

2.7 = 0.1r

r = 27 Ω

1

1

1

3.5.1.6

AO2

02.1

The current flowing into a junction must equal the current flowing out of the junction (owtte)

1

3.5.1.4

AO1

02.2

The sum of the p.d.s in a closed loop must equal the sum of e.m.f.s in that loop (owtte)

1

3.5.1.4

AO1

02.3

Bulbs in series, so same current flows into each

\(
\begin{array}{l}
\textrm{Use of or mention } P = I^2 R (\textrm{or }P = VI\ \rm{or}\ \textit{P} = \frac{V^2}{R})\\
\textrm{Since}\ I\ \textrm{constant}\ P \propto R\ \textrm{so}\ \textbf{A}\ \textrm{must have greater resistance}\\
\end{array}
\)

1

1

1

3.5.1.4

AO2

02.4

Bulbs in parallel so this time p.d. the same

\(
\begin{array}{l}
P = \frac{V^2}{R}\\
\textrm{Since }V\textrm{ constant }P \propto \frac{1}{R}\\
\end{array}
\)

Bulb B brightest

If they think B has the higher resistance, then allow e.c.f if correct reasoning applied

1

1

1

3.5.1.4

AO2

03.1

1 litre = 1000 cm3

191 litres per hour = 53 cm3 s–1

mass per second = ρV = 1000 × 53 × 10–6 = 0.053 kg s–1

1

1

3.4.2.1

AO2

03.2

\(
\begin{array}{l}
P = \frac{\Delta w}{\Delta t}\ \rm{or}\ \textit{E}_{p} = \textit{mgh}\\
P = 0.053 \times 9.81 \times 0.3 = 0.16\ \rm{W}\\
\end{array}
\)

1

1

3.4.1.7

3.4.1.8

AO2

03.3

\(
\begin{array}{l}
P = VI\\
I = \frac{1.2}{5} = 0.24\ \rm{A}\\
\end{array}
\)

1

3.5.1.4

AO1

03.4

\(
\begin{array}{l}
\textrm{Use of } \epsilon = I(R + r)\\
\epsilon = IR + Ir = V + Ir\\
6 = 5 + (0.24 \times r)\\
1 = 0.24 r\\
r = 4.2 \Omega\\
\end{array}
\)

OR

\(
\begin{array}{l}
\textrm{Resistance of pump }R = \frac{V}{I} = \frac{5}{0.24} = 20.8 \Omega\\
\epsilon = I\ (R + r)\\
6 = 0.24\ (20.8 + r)\\
6 = 5 + 0.24 r\\
\end{array}
\)

1

1

1

3.5.1.4

AO2

04.1

\(
\begin{array}{l}
P = VI\\
\textbf{A}: I = \frac{0.7}{3.5} = 0.2\ \rm{A}\\
\textbf{B}: I = \frac{1.95}{6.5} = 0.3\ \rm{A}\\
\textbf{C}: I = \frac{0.3}{1.5} = 0.2\ \rm{A}\\
\end{array}
\)

1

1

1

3.5.1.4

AO1

04.2

I = 0.2 A + 0.3 A + 0.2 A = 0.7 A

1

3.5.1.4

AO2

04.3

\(
\begin{array}{l}
\textrm{p.d. across }R_1 = 9.0 – 6.5 = 2.5\ \textrm{V}\\
R_1 = \frac{V}{I} = \frac{2.5}{0.7} = 3.6\ \Omega\\
\end{array}
\)

Allow e.c.f from answer to 04.2

1

1

3.5.1.4

AO2

04.4

\(
\begin{array}{l}
\textrm{p.d. across }R_3 = 6.5 – 1.5 = 5.0\ \textrm{V}\\
R_3 = \frac{V}{I} = \frac{0.5}{0.2} = 25\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO2

05.1

In series:

ε = 1.5 V + 1.5 V = 3.0 V

r = 0.5 Ω + 0.5 Ω = 1.0 Ω

1

1

3.5.1.4

AO1

05.2

In parallel:

\(
\begin{array}{l}
\epsilon = 1.5\ \rm{V}\\
r = {\left( {\frac{1}{0.5} + \frac{1}{0.5}} \right)^{-1}} = 0.25\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO1

05.3

Two cells in parallel with one cell in series

1

3.5.1.4

AO2

05.4

\(
\begin{array}{l}
\textrm{Use of }\epsilon = I(R + r)\ \rm{or}\ r = \frac{3}{4} = 0.75\ \Omega\\
3.0 = I\ (2.0 + 0.75)\\
I = 1.1\ \rm{A}\\
\end{array}
\)

1

1

3.5.1.6

AO2

05.5

\(
\begin{array}{l}
P = I^2 R = 1.1^2 \times 2\\
= 2.4\ \rm{W}\\
\end{array}
\)

1

1

3.5.1.4

AO2

06.1

Diagram showing 3 resistors connected in series

1

3.5.1.4

AO1

06.2

Total resistance = 33 Ω + 110 Ω + 67 Ω = 210 Ω

1

3.5.1.4

AO1

06.3

Diagram showing three resistors connected in parallel

1

3.5.1.4

AO1

06.4

\(
\begin{array}{l}
\textrm{Total resistance } = {\left( {\frac{1}{110} + \frac{1}{67} + \frac{1}{33}} \right)^{-1}}\\
R = 18\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO1

06.5

Diagram showing two 33 Ω resistors in series and also in parallel with two other 33 Ω resistors in series

1

3.5.1.4

AO2

06.6

Smaller current through each resistor/less power transferred by each resistor/still resistance if 1 resistor breaks

Accept any sensible suggestion

1

3.5.1.4

AO3

07.1

\(
\begin{array}{l}
P = \frac{V^2}{R}\\
R = \frac{V^2}{P} = \frac{12^2}{50} = 2.9\ \Omega\\
\end{array}
\)

1

1

3.5.1.4

AO1

07.2

\(
\begin{array}{l}
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots\\
\frac{1}{2.9} = \frac{8}{R}\\
R = 8 \times 22.9 = 23.2\ \Omega\ (23.0\ \textrm{if you use unrounded number})\\
\end{array}
\)

1

1

3.5.1.4

AO1

07.3

\(
\begin{array}{l}
R = \frac{\rho l}{A}\\
A = \frac{\rho l}{R}\\
A = d \times 0.003\ \rm{m}\\
d = 1.1 \times 10^{-5} \times \frac{0.75}{23} \div 0.003 = 0.12\ \rm{mm}\\
\end{array}
\)

1

1

3.5.1.3

AO2

07.4

5 μΩ cm = 5 × 10–6 cm = 5 × 10–8 Ω m

1

3.1.1

AO2

07.5

This 1 cm strip will have a much lower resistance, \(R \propto p\)

But the strip is 75 cm long so will not affect overall resistance

owtte

1

1

3.1.3

AO3

08.1

LDR and resistor drawn in series, correct symbols

Some indication that VOUT is across the fixed resistor

1

1

3.5.1.5

AO2

08.2

The resistance of the LDR decreases so current increases

The p.d. across the fixed resistor increases since current increases, V = IR/has a greater share of the total resistance so p.d. increases

This first mark maybe given even if VOUT wrongly labelled in 08.1

1

1

3.5.1.5

AO2

08.3

Examples of calculation:

\(
\begin{array}{l}
1\ \rm{M}\Omega:\\
\rm{Dark}\ V_{\rm{out}} = \frac{1 \times 10^6}{1 \times 10^6 + 1 \times 10^6} \times 6 = 3\ \rm{V}\\
\rm{Light}\ V_{\rm{out}} = \frac{1 \times 10^6}{1 \times 10^6 + 5400} \times 6 = 6\ \rm{V}\\
10\ \rm{k}\ \Omega:\\
\rm{Dark}\ V_{\rm{out}} = \frac{1 \times 10^4}{1 \times 10^4 + 1 \times 10^6} \times 6 = 0.06\ \rm{V}\\
\rm{Light}\ V_{\rm{out}} = \frac{1 \times 10^4}{1 \times 10^4 + 5400} \times 6 = 4\ \rm{V}\\
1\ \rm{k}\ \Omega:\\
\rm{Dark}\ V_{\rm{out}} = \frac{1 \times 10^3}{1 \times 10^3 + 1 \times 10^6} \times 6 = 0.006\ V\\
\rm{Light}\ V_{\rm{out}} = \frac{1 \times 10^3}{1 \times 10^3 + 5400} \times 6 = 0.9\ V\\
10\ \rm{k}\ \Omega\textrm{ has the greatest range}\\
\end{array}
\)

3 marks max for examples of calculations

1 mark for correct deduction with explanation

max 4

3.5.1.5

AO2 × 2

AO3 × 2

Skills box answers

Question

Answer

1

2

Circuit is connected as briefly as possible to prevent the cell heating up, which would alter the resistance.

3

e.m.f = 3.15 V, resistance = 15 Ω (The gradient is in \(\frac{\rm{V}}{\rm{mA}}\) so need to multiply by 103 to obtain Ω.)

Loading...