

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \,\mathrm{m\,s^{-2}}$ unless stated otherwise in the question.

Chapter 1 Indices, surds and proof

Question	Answer	Extra information	Marks
1.1	$2^3 + 1 = 9 = 3^2$, which is not prime	Any valid counter example	B1
	Total		1 mark
1.2	Let $p = 2n + 1$, $q = 2m + 1$ and $p + q = 2k + 1$ p + q - p = 2k + 1 - (2n + 1) = 2k + 1 - 2n - 1 = 2k - 2n	Defining three distinct odd numbers. Allow any equally appropriate alternative that assumes all three facts.	M1
	= 2(k - n), which is even This is a contradiction.	Any step that shows that if $p + q$ is odd and either p or q is odd, then the other must be even	M1
	Therefore, if $p + q$ is odd, and p is odd, then q must be even.	Valid conclusion	A1

Question	Answer	Extra information	Marks
	Total		3 marks
	Let $p = 2n + 1$ and $q = 2n + 3$	Defining two consecutive odd numbers. Allow any appropriate alternatives, e.g. $p = 2n - 1$ and $q = 2n + 1$	M1
	$pq = 4n^2 + 8n + 3$ = 4(n^2 + 2n) + 3	Multiplying them together	M1
	This is of the form $4m + 3$ where m is an integer, which is 1 less than a multiple of 4 since $4m + 3 + 1 = 4(m + 1)$	Valid conclusion	A1
1.3	They may use $p = 2n + 1$ and $2n - 1$ to give $(2n + 1)(2n - 1) = 4n^2 - 1$	Allow alternative proof	
	Alternatively, they may use $pq = 4n^2 + 8n + 3$ $= 4n^2 + 8n + 4 - 1$ $= 4(n^2 + 2n + 1) - 1$		
	Total		3 marks
1.4	$\left(\frac{a^3}{b^{-2}}\right)^3 = \frac{a^9}{b^{-6}}$	Use of index law $(a^b)^c = a^{bc}$ on both the top and the bottom of the fraction	M1
	$=a^9b^6$	Correct simplification	A1
	Total		2 marks

Question	Answer	Extra information	Marks
	$4^{x} \times 2^{2x-1} = (2^{2})^{x} \times 2^{2x-1}$	For 4 written as power of 2	M1
1.5 (a)	$4^{x} \times 2^{2x-1} = (2^{2})^{x} \times 2^{2x-1}$ $= 2^{2x} \times 2^{2x-1} = 2^{4x-1}$	Use of index laws $(a^b)^c = a^{bc}$ and $a^b \times a^c = a^{b+c}$	A1
	$2^{4x-1} = \frac{1}{\sqrt{2}}$	Substituting their expression from (a)	M1
	$2^{4x-1} = 2^{-0.5}$	Writing $\frac{1}{\sqrt{2}}$ as a power of 2	M1
1.5 (b)	$4x-1=-\frac{1}{2}$	$\sqrt{2}$	
	$2^{4x-1} = \frac{1}{\sqrt{2}}$ $2^{4x-1} = 2^{-0.5}$ $4x - 1 = -\frac{1}{2}$ $4x = \frac{1}{2} \implies x = \frac{1}{8}$	Correct solution	A1
	Total		5 marks
	$3^{3x+1} \times (3^2)^{2x-3} = (3^3)^{2x} \times (3^4)^{x-2}$	Writing all terms as powers of 3	M1
	3x+1+2(2x-3) = 6x+4(x-2)	Attempting to simplify	M1
1.6	3x + 1 + 4x - 6 = 6x + 4x - 8		
	7x - 5 = 10x - 8		
	3x = 3		
	x = 1	Correct solution	A1
	Total		3 marks

Question	Answer	Extra information	Marks
	$\left(2^a \times 3^b\right)^2 \div \left(2^{2a-1} \times 3^{3b}\right)$	Use of index law $(a^b)^c = a^{bc}$	M1
	$=(2^{2a}\times 3^{2b})\div(2^{2a-1}\times 3^{3b})$		
1.7 (a)	$=2^{2a-(2a-1)}\times 3^{2b-3b}$	Attempting to combine the powers of 2 and 3	M1
	$=\frac{2}{3^b}$ (or 2×3^{-b})	Correct simplification	A1
	$\frac{2}{3^b} = 6^k \Rightarrow 2 = 6^k \times 3^b$	Multiplying both sides by 3^b	M1
1.7 (b)	$2 = 2^k \times 3^k \times 3^b$		
	$=2^k\times 3^{k+b}$		
	Therefore $k = 1$	Correct solution	A1
1.7 (c)	The student is correct because the expression in (a) is independent of a	Any valid reason	B1
	-		
	Or, they may say $-b = k$, so b must equal -1		
	Total		6 marks
1.8	If $x = \frac{1}{4}$, $\sqrt{x} = \sqrt{\frac{1}{4}} = \frac{1}{2}$	Any valid counter example using the fact that when you square a number between 0 and 1 it gets smaller	B1
	$\frac{1}{2} > \frac{1}{4}$ so the statement is not true.		

Question	Answer	Extra information	Marks
	Total		1 mark
	$x = \frac{\sqrt{50}}{1 - \sqrt{2}}$	Factorising and rearranging	M1
	$x = \frac{\sqrt{50}}{1 - \sqrt{2}} \times \frac{1 + \sqrt{2}}{1 + \sqrt{2}}$ $= \frac{\sqrt{50} + \sqrt{100}}{1 - 2}$	Attempting to rationalise denominator. Must see $\frac{1+\sqrt{2}}{1+\sqrt{2}}$	M1
1.9 (a)	$=\frac{\sqrt{50}+\sqrt{100}}{1-2}$		
	$=\frac{5\sqrt{2}+10}{-1}$		
	$=-10-5\sqrt{2}$	Correct answer	A1
	$\left(3^4\right)^{11x-2} = 3^{-2.5}$	Attempting to convert to powers of 3	M1
1.9 (b)	$\left(3^4\right)^{11x-2} = 3^{-2.5}$ $44x - 8 = -\frac{5}{2}$	Use of index laws. Allow one error in the indices.	M1
	$x = \frac{1}{8}$	Correct solution	A1
	Total		6 marks
	Assume that integers a and b exist such that $8a + 6b = 5$	Valid statement of the converse	M1
1.10	Factorise the LHS so $2(4a + 3b) = 5$		
1.10	LHS is even but RHS is odd, which is a contradiction.	Establishing a contradictory statement	M1
	Therefore, no such integers a and b exist.	Correct conclusion	A1

Question	Answer	Extra information	Marks
	Total		3 marks
1.11	$\left(2^{2}\right)^{p} = \frac{2^{\frac{1}{2}}}{2^{q}}$	Writing all terms as powers of 2	M1
1.11	2p = 0.5 - q	Forming a correct equation	M1
	q = 0.5 - 2p o.e.	Rearranging into the required format	A1
	Total		3 marks
1.12	$16 \ge 4, 25 \ge 8, 36 \ge 16$	Correctly checking 3, 4 and 5 only	B1
	Total		1 mark
	Assume that all three sides, a , b and c of a right-angled triangle are odd.	Valid statement of the converse	M1
	Pythagoras' theorem says $a^2 + b^2 = c^2$	Stating Pythagoras' theorem	M1
1.13	The square of an odd number is also odd, since $(2k + 1)^2 = 2(2k^2 + 2k) + 1$	Proof of intermediate fact	M1
1.13	The sum of two odd numbers is even, since $(2p + 1) + (2q + 1) = 2(p + q + 1)$	Proof of intermediate fact	M1
	LHS of Pythagoras' theorem is even and RHS is odd, therefore the expressions cannot be equal, which is a contradiction.		
	Therefore, all three sides cannot be odd.	Correct conclusion	A1
	Total		5 marks

Question	Answer	Extra information	Marks
	$a^2 - b^2 = 5$ or $a^2 - b^2 = -5$	Identifying $a^2 - b^2$ as a square root of 25	M1
1.14	If $a = 3$, $a^2 = 9$, so $b^2 = 4$ or 14	For both possible values of b	M1
	b is an integer so $b^2 = 4$ and $b > 0$ therefore $b = 2$	Identifying correct b	A1
	Total		3 marks
	$(2n+3)^2 - (2n+1)^2$		
	$=4n^2+12n+9-(4n^2+4n+1)$	Attempting to expand brackets	M1
1.15	$=4n^2+12n+9-4n^2-4n-1$	All terms and signs correct	M1
	= 8n + 8		
	= 8(n+1) which is divisible by 8	Correct conclusion	A1
	Total		3 marks
	$(m-3n)^2 \ge 0$ as it is a square.	Attempting to rearrange given expression to construct proof in reverse	M1
	Multiplying out and rearranging gives		
1.16 (a)	$m^2 + 9n^2 \ge 6mn$	Expanding correctly	M1
	Dividing by <i>mn</i> gives		
	$\frac{m}{n} + 9 \frac{n}{m} \ge 6$ since mn is positive.	Correct final step	A1
1.16 (b)	m = -1, n = 1	Any valid counter example	B1
	Total		4 marks

Question	Answer	Extra information	Marks
	Assume that there are a finite set of primes p_1 to p_n	Valid statement of the converse	M1
	Multiply $p_1 \times p_2 \times \times p_n$ and add 1		
	This number must either be prime or have a prime factor.	Statement from well-known proof	M1
	If prime, it is different from all of $p_1, \ldots p_n$		
1.17	If it has a prime factor, this must be a prime factor not in the original set, as all of the primes in the original set will leave a remainder of 1 when divided.	Statement that prime factorisations are unique	M1
	Therefore, there will always be another prime no matter how big	Correct conclusion	A1
	your initial set.	The proof shown is the most common. Accept any valid proof.	
	Total		4 marks
	Assume p and q are even integers and pq is an odd integer.	Valid statement of the converse	M1
	$pq = 2m \times 2n = 4mn$, which is even when m, n are integers.	Expressing p and q as even numbers	M1
1.18	This contradicts the assumption that pq is an odd integer.		
	Therefore, if pq is odd, p and q cannot both be even, so at least one of them must be odd.	Correct conclusion	A1
	Total		3 marks

Question	Answer	Extra information	Marks
	By contradiction:	Use of standard proof	M1
	Assume $\sqrt{2}$ is rational. Therefore $\sqrt{2}$ can be written as $\frac{a}{b}$	Valid statement of the converse	M1
	where a and b are integers with no common factors.		
	$\sqrt{2} = \frac{a}{b} \implies b\sqrt{2} = a \implies 2b^2 = a^2$		
	Therefore, a^2 is even.	Showing a is even	M1
1.19	If a^2 is even, a is even, so let $a = 2k$	Statement of fact	
	$2b^2 = a^2$		
	$2b^2 = \left(2k\right)^2 = 4k^2$		
	$b^2 = 2k^2$		
	Therefore, b^2 is even, and therefore b is even.	Showing b is even	M1
	If a and b are both even, they have a common factor of 2		
	This is a contradiction, therefore $\sqrt{2}$ is irrational.	Correct conclusion	A1
	Total		5 marks
	If n is even, $n = 2k$	Proof for all even numbers	B1
	$(2k)^2 = 4k^2$, which is not of the form $4n - 1$		
1.20	If n is odd, $n = 2k + 1$	Proof for all odd numbers	B1
	$(2k+1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$, which is not of the form		
	4n-1		
	Total		2 marks

Question	Answer	Extra information	Marks
1.21	Two consecutive cubes must be the cube of an odd number and the cube of an even number. Using $(2k)^3$ and $(2k+1)^3$ $(2k+1)^3 - (2k)^3$ $= 8k^3 + 12k^2 + 6k + 1 - 8k^3$	Writing expressions for consecutive cubes. Allow acceptable alternative expressions.	M1
	$=8k^3 + 12k^2 + 6k + 1 - 8k^3$	Correct expansion. Allow up to one expansion error for this mark.	M1
	$=12k^2+6k+1=2(6k^2+3k)+1$, which is an odd number	Correct conclusion	A1
	Total		3 marks