

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \,\mathrm{m\,s^{-2}}$ unless stated otherwise in the question.

Chapter 2 Quadratics and their graphs

Question	Answer	Extra information	Marks
	$x^2 - 2x + 6 = (x - 1)^2 + 5$	Completing the square	M1
2.1	Since square numbers are always ≥ 0 , the expression will always		
	be greater than or equal to 5, which is greater than 0	Correct conclusion	A1
	Total		2 marks
2.2 (a)	$2x^2 + 20x + 17 = 2(x^2 + 10x) + 17$	Correct factorisation	M1
	$= 2[(x+5)^2 - 25] + 17$ = 2(x+5)^2 - 33	Completing the square	M1
	$=2(x+5)^2-33$	Simplifying	A1
2.2 (b)	-33	Correct minimum	B1

Question	Answer	Extra information	Marks
2.2 (c)	-5	Correct value	B1
	Total		5 marks
	Since the <i>x</i> -intercepts are 1 and 3, the equation will be of the form $y = a(x-1)(x-3)$	Use of general equation	M1
2.2	The <i>y</i> -intercept of this equation will be at $a \times (-1) \times (-3) = 3a$	Correct equation for constant term	M1
2.3	Since the <i>y</i> -intercept is at 9, this means that $a = 3$	Correct a value	M1
	The equation of the curve is therefore $y = 3(x - 1)(x - 3)$, which expands to		A 1
	$y = 3x^2 - 12x + 9$	Correct equation	A1
	Total		4 marks
2.4 (a)	(a-5)(a-1) = 0 a = 5 or $a = 1$	Attempting to solve. Can be implied from correct solutions.	M1
	a = 5 or a = 1	Correct solutions	A1
2.4 (b)	$a = \sqrt{b}$	Correct substitution	M1
	$b = a^2$, therefore $b = 5^2 = 25$ or $b = 1^2 = 1$	Use of their results from (a)	A1
	Total		4 marks

Question	Answer	Extra information	Marks
	One example where it is either true or false. For example:	One example showing claim is either true or false	M1A1
	If $x = 5$, $(5-5)^2 + 10 = 10$; $4 \times 5 = 20$		
	10 is not greater than 20, so the statement is false.		
2.5	One example where it is the opposite. For example:	Second example to show opposite result	A1
	If $x = 12$, $(12-5)^2 + 10 = 49$; $4 \times 12 = 48$		
	59 is greater than 48, so the statement is true.		
	The student's claim is sometimes true.	Correct conclusion	A1
	Total		4 marks
	$\sqrt{p}(3-81p\sqrt{p})$ Since $p \neq 0$	Any correct first step	M1
	$3 - 81p\sqrt{p} = 0$	Statement that expression inside brackets = 0	M1
	$3 = 81p\sqrt{p}$ $1 = 27p\sqrt{p}$		
2.6 (a)	$1 = 27 p \sqrt{p}$		
	$p^{\frac{3}{2}} = \frac{1}{27}$		
	$p^3 = \frac{1}{729}$		
	$p = \frac{1}{9}$	Correct solution	A1

Question	Answer	Extra information	Marks
	$x^4 - 20x^2 + 64 = (x^2)^2 - 20(x^2) + 640$	Identifying quadratic in x^2	M1
26(b)	$(x^2 - 4)(x^2 - 16) = 0$ $x^2 = 4$ or $x^2 = 16$		
2.0 (0)	$x^2 = 4$ or $x^2 = 16$	Correct values for x^2	M1
	x = 2, -2, 4 or -4	All four solutions	A1
	Total		6 marks
	$2\sin^2\theta + \sin\theta - 1 = 0$	Identification of quadratic in $\sin \theta$	M1
	$(2\sin\theta - 1)(\sin\theta + 1) = 0$		
2.7	$\sin \theta = \frac{1}{2}$ or $\sin \theta = -1$	Correct values for $\sin \theta$	M1
	$\theta = 30^{\circ}, \theta = -90^{\circ}$	Both solutions correct	A1
	Total		3 marks
2.8 (a)	£350	Maximum point correctly identified	B1
2.8 (b)	x-8=0		
2.8 (0)	£8	Correct value	B1
2.8 (c)	$P = 350 - 14(15 - 8)^2$	Correct substitution	M1
	=-£336		
	They would make a loss of £336	Correct conclusion	A1

Question	Answer	Extra information	Marks
	$350 - 14(x - 8)^2 = 200$	Correct substitution	M1
20(4)	$x - 8 = \pm 3.27$	Sight of ± 3.27	M1
2.8 (d)	x = 11.27 or $x = 4.73$	Both solutions, to at least 3 s.f.	M1
	£5	Correct conclusion	A1
	Total		8 marks
	$4x^3 - 37x^2 + 9x = 0$	Rearranging	M1
	$x(4x^2 - 37x + 9) = 0$	One factor found	M1
2.9 (a)	x(4x-1)(x-9) = 0	Fully factorising	M1
	$x(4x^{2} - 37x + 9) = 0$ $x(4x - 1)(x - 9) = 0$ $x = 0, x = \frac{1}{4}, x = 9$	All three correct solutions	A1
	$x = (y+3)^2$	Identifying substitution	M1
	$(y+3)^2 = 0 \implies y = -3$	Correct solution	A1
2.9 (b)	$x = (y+3)^{2}$ $(y+3)^{2} = 0 \implies y = -3$ $(y+3)^{2} = \frac{1}{4} \implies y+3 = \pm \frac{1}{2} \implies y = -2.5 \text{ or } y = -3.5$ $(y+3)^{2} = 9 \implies y+3 = \pm 3 \implies y = 0 \text{ or } y = -6$ Total	Both solutions for second equation	A1
	$(y+3)^2 = 9 \implies y+3 = \pm 3 \implies y = 0 \text{ or } y = -6$	Both solutions for third equation	A1
	Total		8 marks

Question	Answer	Extra information	Marks
	$(-2)^2 - 4 \times 1 \times (k+1) = 0$	Use of $b^2 - 4ac = 0$ seen or implied	M1
	4 - 4(k+1) = 0		
2.10	4 = 4(k+1)		
2.10	1 = k + 1		
	k = 0		
	So having exactly one real root implies that $k = 0$	Correct solution	A1
	Total		2 marks
	The <i>x</i> -intercepts are 20 and 140, so the equation will be of the form $J = a(x - 20)(x - 140)$	Expressing as general quadratic. Both <i>x</i> -intercepts must be identified for mark.	M1
	The graph is symmetrical, so the maximum point will be at $x = 80$	Use of symmetrical property	M1
	When $x = 80$, $y = 360$, which is the maximum number of jackets sold.	Coordinates of turning point identified	M1
2.11	Substituting $x = 80$ into the equation and setting it equal to 360 gives:	Use of the constant term to find the value of a	M1
	360 = a(80 - 20)(80 - 140)		
	360 = a(60)(-60)		
	$a = 360 \div -3600 = -0.1$		
	The equation of the curve is therefore $J = -\frac{1}{10}(x-20)(x-140)$		
	which, in the required form, expands to $J = -\frac{1}{10}x^2 + 16x - 280$	Correct equation in correct form	A1
	Total		5 marks

Question	Answer	Extra information	Marks
	$-2x^2 + 12x - k = -2(x^2 - 6x) - k$	Correct first step	M1
2.12 (a)	$=-2[(x-3)^2-9]-k$	Completing the square	M1
	$= -2(x-3)^2 + (18-k)$	Simplifying	A1
2.12 (b)	18-k	Correct maximum	B1
	When $x = -4$, $y = 0$	Correct method using either intercept	M1
	$0 = -2 \times (-4)^2 + 12 \times -4 - k$		
	$0 = -2 \times 16 - 48 - k$		
	k = -32 - 48		
	k = -80	Correct value of <i>k</i>	A1
2.12 (c)	or		
	When $x = 10$		
	$y = -2 \times (10)^2 + 12 \times -10 - k$		
	$y = -2 \times 100 + 12 \times 10 - k$		
	k = -200 + 120		
	k = -80		
	Total		6 marks
	$2 \times 2^{2x} - 9 \times 2^x + 4 = 0$	Identifying quadratic in 2^x	M1
	$(2 \times 2^x - 1)(2^x - 4) = 0$		
2.13	$2^x = \frac{1}{2}$ or $2^x = 4$	For both solutions of the quadratic	M1
	x = -1 or $x = 2$	Both solutions correct	A1
	Total		3 marks

Question	Answer	Extra information	Marks
	To have one repeated root $b^2 - 4ac = 0$	Statement of rule	B1
	$(-5k)^2 - 4 \times 1 \times (9k + 7) = 0$	Correct method	M1
	$25k^2 - 36k - 28 = 0$		
	Using the quadratic equation:		
	$k = \frac{36 \pm \sqrt{1296 - 4 \times 25 \times (-28)}}{50}$	Any attempt to solve quadratic. Can be implied by sight of correct solutions.	M1
2.14 (a)	$=\frac{36\pm\sqrt{4096}}{}$		
	=		
	$=\frac{36\pm64}{}$		
	50		
	or by factorising:		
	(25k + 14)(k - 2) = 0		
	k = 2 is the only valid solution	Correct conclusion	A1
	When $k = 2$	Substituting their value for <i>k</i> from (a)	M1
	$f(x) = x^2 - 10x + 25$		
2.14 (b)	$x^2 - 10x + 25 = 0$	Identification of perfect square. Can be implied by correct final	M1
	$(x-5)^2=0$	answer.	
	x = 5	Correct solution	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	When n is even, $n = 2k$	Correct proof for all even <i>n</i>	M1
	$n^3 + 6 = (2k)^3 + 6$		
	$=8k^3+6$		
	which is not divisible by 8		
	When n is odd, $n = 2k + 1$	Correct proof for all odd <i>n</i>	M1
2.15			
	$=8k^3+12k^2+6k+1+6$		
	$=2(4k^3+6k^2+3k+3)+1$		
	Odd numbers are not divisible by 8 as all multiples of 8 are	Valid reasoning	M1
	even.		
	Therefore, $n^3 + 6$ is never divisible by 8, for all $n \in \mathbb{N}$	Correct conclusion	A1
	Total		4 marks
2.16	$42^2 - 42 + 41 = 1763$, which is 41×43 and therefore not prime.	Any valid counter example	B1
	Total		1 mark