

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \,\mathrm{m\,s^{-2}}$ unless stated otherwise in the question.

Chapter 4 Inequalities

Question	Answer	Extra information	Marks
4.1	$y \le 5 + 2x - x^2$ $y > x - 1$ $y \ge 2 - x$	Correct quadratic curve with correct inequality	B1
	y > x - 1	Correct line with correct inequality	B1
	$y \ge 2 - x$	Correct line with correct inequality	B1
	Total		3 marks
4.2 (a)	1 - 2x > 4x + 4		
	6x < -3	Rearranging correctly	M1
	$x < -\frac{1}{2}$	Correct range	A1

Question	Answer	Extra information	Marks
4.2 (b)	Critical values $\frac{2}{3}$ and -1	Identifying critical values	B1
	$-1 < x < \frac{2}{3}$	Correct range between critical values	B1
4.2 (c)	$-1 < x < -\frac{1}{2}$	Correct overlap of the two ranges	B1
	Total		5 marks
	$b^2 - 4ac < 0$		
4.3 (a)		Use of discriminant	M1
	$k^2 - 8 < 0$	Must see the calculation as this is a given answer	A1
4.3 (b)	$ \left(k + \sqrt{8}\right) \left(k - \sqrt{8}\right) < 0 $ $ -\sqrt{8} < k < \sqrt{8} $	Factorising using difference of two squares	M1
	$-\sqrt{8} < k < \sqrt{8}$	Correct range between critical values	A1
	Total		4 marks
	$6k \le 48$	Use of constraint on perimeter	B1
	$k \le 8$		
	$2k^2 \ge 50$	Use of constraint on area	M1
4.4 (a)	$k^2 \ge 25$		
	$k \le -5$ or $k \ge 5$	Area inequality solved	A1
	But $k \ge 0$ because it is the length of a real object.		
	For both to be true $5 \le k \le 8$	Correct overlap of the two ranges	A1

Question	Answer	Extra information	Marks
4.4 (b)	Maximum area when $k = 8$	Use of the maximum value of <i>k</i>	M1
4.4 (U)	$8 \times 16 = 128 \mathrm{m}^2$	Correct maximum area	A1
	Total		6 marks
	$b^2 - 4ac > 0$		
	$(-6)^2 - 4 \times k \times (10 - k) > 0$	Use of discriminant	M1
4.5 (a)	36 - 4k(10 - k) > 0		
4.3 (a)	$36 - 40k + 4k^2 > 0$		
	$4k^2 - 40k + 36 > 0$		
	$k^2 - 10k + 9 > 0$	Correctly deriving quadratic	A1
	(k-1)(k-9) > 0	Attempting to solve quadratic. Can be implied from 1 and 9	M1
4.5 (b)		seen.	
	k < 1 or k > 9	Correct range of values for k	A1
	Total		4 marks
	$10x^2 + 15x - 2x - 3 < 16x - 2$	Correctly expanding brackets and collecting terms on one side	M1
	$10x^2 - 3x - 1 < 0$		
1.6	(5x+1)(2x-1) < 0		
4.6	Critical values $x = -0.2$ and $x = 0.5$	Solving to find both critical values	M1
	-0.2 < x < 0.5	Choosing the inside region	M1
	${x: -0.2 < x < 0.5}$	Correct solution in set notation	A1
	Total		4 marks

Question	Answer	Extra information	Marks
4.7	$(x-7)(x+2) > -20$ $x^{2}-7x+2x-14+20 > 0$ $x^{2}-5x+6 > 0$ $(x-2)(x-3) > 0$	Expanding and collecting terms to correctly derive quadratic	M1
	Critical values are: $x = 2$ and $x = 3$	Solving to find both critical values	M1
	x < 2 or $x > 3$	Correct range of values for <i>x</i>	A1
	Total		3 marks
4.8	x = 0 is a critical value	Identifying one critical value	B1
	x = 6 is a critical value	Identifying second critical value	B1
	$x = \{x: x < 0\} \cup \{x: x > 6\}$	Correct range, written in set notation. 3 marks can be given for this set notation line.	B1
	Total		3 marks

Question	Answer	Extra information	Marks
4.9 (a) and (b)	$y = x^{2} - 4x + 3$ $y = 3x$ $y = 3x$ $y = 3x$	Straight line drawn through (0, 0) and (4, 3) Quadratic curve with correct intercepts labelled Solid line and dashed curve Correct area shaded	B1 B1 B1
	Total		4 marks

Question	Answer	Extra information	Marks
	$8 - x = 2x^2 + 2kx + 10$	Valid substitution	M1
	$2x^2 + (2k+1)x + 2 = 0$	Correct quadratic	A1
	$b^2 - 4ac < 0$		
	$(2k+1)^2 - 4 \times 2 \times 2 < 0$	Use of discriminant	M1
	$4k^2 + 4k + 1 - 16 < 0$		
	$4k^2 + 4k - 15 < 0$	Deriving correct quadratic	M1
	(2x-3)(2x+5) < 0	Attempting to solve quadratic	M1
	x = 1.5 and $x = -2.5$ are critical values	Solving to find both critical values	A1
	${x: -2.5 < x < 1.5}$	Correct range, written in set notation	A1
	Total		7 marks
	$2x^2 - 5x - 1 = 8 + x - x^2$	Equating the two expressions	M1
	$3x^2 - 6x - 9 = 0$	Deriving quadratic and attempting to solve	M1
4.11 (a)	$x^{2}-2x-3=0$ (x-3)(x+1) = 0		
	(x-3)(x+1)=0		
	x = 3 and $x = -1$	Correct solutions	A1
	(3, 2) and $(-1, 6)$	Both y coordinates identified	A1
4.11 (b)	-1 < x < 3		
	The $g(x)$ curve is above the $f(x)$ curve in this interval	Correct inequality and explanation	B1
	Total		5 marks

Question	Answer	Extra information	Marks
	$2x+2=\frac{2}{1+x}$	Correct substitution	M1
	(2x+2)(1+x) = 2		
	$2x + 2x^2 + 2 + 2x - 2 = 0$		
4.10	$2x^2 + 4x = 0$		
4.12	$x^2 + 2x = 0$		
	x(x+2) = 0	Attempting to solve the equation	M1
	x = 0 or $x = -2$	Correct solutions	A1
	When $x = 0$, $y = 2$		
	When $x = -2$, $y = -2$	Both y values identified	A1
	Total		4 marks