

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \,\mathrm{m \, s^{-2}}$ unless stated otherwise in the question.

Chapter 6 Graphs of functions

Question	Answer	Extra information	Marks
6.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Correct shape of curve Correct <i>x</i> -intercepts	B1 B1
	Total		2 marks

Question	Answer	Extra information	Marks
6.2	$y = x^{2}(x + 3)^{2}$ $-4 -3 -2 -1 0 1 x$	Correct shape of curve Correct x-intercepts	B1 B1
	Total		2 marks
6.3 (a)	$0 = \frac{k}{x} + 2$ $-2 = \frac{k}{x} \implies x = -\frac{k}{2}, y = 0$	Setting $y = 0$ Solving to find x in terms of k	M1 A1

Question	Answer	Extra information	Marks
6.3 (b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Correct shape of curve. Must have both branches. Horizontal asymptote shown	B1 B1
	y = 2	Equation of asymptote	B1
	Total		5 marks
6.4 (a)	$f(x) = x(x^2 + x - 6)$	Taking out x as a factor	M1
	f(x) = x(x+3)(x-2)	Fully correct factorisation	A1
6.4 (b)	x(x+3)(x-2) = 0 x = 0, x = -3, x = 2	All three solutions correct	B1

Question	Answer	Extra information	Marks
6.4 (c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Correct shape of curve Correct <i>x</i> -intercepts at -3 and 2	B1 B1
6.4 (d)	$x^{3} + x^{2} - 6x = 9 + 3x$ $x^{3} + x^{2} - 6x - 9 - 3x = 0$ $x^{2}(x+1) - 9(x+1) = 0$ $(x^{2} - 9)(x+1) = 0$ $(x+3)(x-3)(x+1) = 0$ $x = -3, y = 0 \Rightarrow (-3, 0)$ $x = 3, y = 18 \Rightarrow (3, 18)$ $x = -1, y = 6 \Rightarrow (-1, 6)$	Correctly equating expressions and moving terms to one side Fully factorising the expression Solving for <i>x</i> and finding the corresponding <i>y</i> -coordinates	M1 M1 A1
	Total		8 marks

Question	Answer	Extra information	Marks
	y = x and 2y - x = 6	Attempting to solve 'positive' version of the modulus function	M1
	2y - y = 6		
	y = 6	Finding one variable	M1
	When $y = 6$, $x = 6$, so the point is $(6, 6)$	Both coordinates correct	A1
6.5			
	y = -x and 2y - x = 6	Attempting to solve 'negative' version of the modulus function	M1
	2y + y = 6		
	3y = 6		
	y = 2	Finding one variable	M1
	When $y = 2$, $x = -2$, so the point is $(-2, 2)$	Both coordinates correct	A1
	Total		6 marks
6.6	Because the graph does not pass through the origin	Correct explanation	B1
	Total		1 mark
6.7	Because the area of a circle is a multiple of the square of its radius, not of its radius	Correct explanation	B1
	Total		1 mark

Question	Answer	Extra information	Marks
6.8 (a)	F d	For single curve with correct shape For the curve approaching both positive axes as asymptotes	B1
6.8 (b)	$F = \frac{k}{d^2}$ $\frac{k}{(0.95d)^2} = \frac{1}{0.95^2} \times \frac{k}{d^2}$ =1.108033×\frac{k}{d^2}, so an increase of 10.8%	Correct format for this type of proportionality Attempting to calculate the increase Correct interpretation of the calculation	M1 M1 A1
	Total		5 marks
6.9 (a)	a = kb b = jc where j , k are constants a = k(jc) a = (jk)c j, k are constants, so jk is also constant	Correct structure for direct proportion Substituting for h and correct conclusion	M1
	a = (jk)c	Substituting for <i>b</i> and correct conclusion	

Question	Answer	Extra information	Marks
	8 = 2k, so $k = 4$	Correctly substituting $a = 8$, $b = 2$ to find k	M1
6.9 (b)	3 = 6j, so $j = 0.5$	Correctly substituting $b = 3$, $c = 6$ to find j	M1
0.7 (0)	Therefore, $a = 4 \times 0.5 \times c$		
	So, $c = 0.5a$	Correct formula	A1
6.9 (c)	5 = 0.5a		
0.9 (0)	a = 10	Correct value for a	B1
	Total		6 marks
6.10 (a)		Correct shape curve. Must have both branches. Horizontal asymptote shown, where $a>0$	B1
	y = -a	Equation of asymptote	B1

Question	Answer	Extra information	Marks
	$0 = \frac{k}{x^2} - a$	Setting $y = 0$	M1
6.10 (b)	$x^2 = \frac{k}{a} \implies x = \pm \sqrt{\frac{k}{a}}$	Correct positive x value	A1 A1
0.10 (6)	$\left(\sqrt{\frac{k}{a}}, 0\right) \text{ and } \left(-\sqrt{\frac{k}{a}}, 0\right)$	Correct negative x value	AI
6.10 (c)	$\left(\sqrt{\frac{8}{2}}, 0\right) \text{ and } \left(-\sqrt{\frac{8}{2}}, 0\right)$ $x = 2 \text{ or } x = -2$	Substituting $k = 8$ and $a = 2$ into expression from (b)	M1
	x = 2 or x = -2	Both values correct	A1
	Total		8 marks

Question	Answer	Extra information	Marks
6.11 (a)	y = 2x + 1 $y = 3x - 2 $ $y = 3x - 2 $ $y = 3x - 2 $ Points of intersection:	f(x) = 2x + 1 correct shape with point in the correct quadrant $g(x) = 3x - 2 $ correct shape with point in the correct quadrant	B1 B1
	$f(x)$ meets the x-axis at $-\frac{1}{2}$, and $g(x)$ meets the x-axis at $\frac{2}{3}$	Two correct <i>x</i> -intercepts	B1
	f(x) meets the y-axis at 1, and $g(x)$ meets the y-axis at 2	Two correct <i>y</i> -intercepts	B1

Question	Answer	Extra information	Marks
	$ \frac{\text{Point 1}}{2x + 1 = 3x - 2} $ $ x = 3 $	For right-hand intersection point where both graphs are 'positive'	M1
	When $x = 3$, $y = 7$, so the point is $(3, 7)$	Correct coordinates	A1
6.11 (b)	Point 2 2x + 1 = -(3x - 2) 2x + 1 = -3x + 2 5x = 1 x = 0.2	For left-hand intersection point where the first graph is 'positive' and the second graph is 'negative'	M1
	When $x = 0.2$, $y = 1.4$, so the point is $(0.2, 1.4)$	Correct coordinates	A1
6.11 (c)	0.2 < x < 3	Correct range	B1
	Total		9 marks

Question	Answer	Extra information	Marks
6.12 (a)		Correct shape of curve Correct <i>x</i> -intercepts at –4 and 0	B1 B1
	$-x^2(x+4) = -x$	Correct first step	M1
	$x - 4x^2 - x^3 = 0$	For forming cubic equal to 0	M1
	$-x(x^{2} + 4x - 1) = 0$ $b^{2} - 4ac = 16 - (-4)$		
6.12 (b)		For use of discriminant	M1
	= 20 > 0		
	The quadratic has two solutions and so the cubic has three solutions and the graph $y = f(x)$ will intersect $y = -x$ three times.	Correct conclusion	A1
	Total		6 marks
6.13 (a)	(4,-1)	One mark per correct coordinate	B1B1

Question	Answer	Extra information	Marks
	2(x-4)-1 = x-2 $2x-8-1 = x-2$	For 'positive' intersection	M1
6 13 (b)	x = 7	Correct solution	A1
6.13 (b)	x = 7 $-2(x-4) - 1 = x - 2$ $-2x + 8 - 1 = x - 2$	For 'negative' intersection	M1
	3x = 9, therefore $x = 3$	Correct solution	A1
6.13 (c)	$2 x-4 < x-1 \rightarrow 2 x-4 - 1 < x-2$	Recognising that this is the same inequality	M1
0.13 (c)	${x: 3 < x < 7}$	Correct range of values	A1
	When the line touches the vertex of the graph		
	y = k - x passes through $(4, -1)$		
6.13 (d)	-1 = k - 4	Correct substitution	M1
	k = 3		
	The line will intersect the graph more than once when $k > 3$	Correct range	A1
	Total		10 marks

Question	Answer	Extra information	Marks
6.14 (a)	$x = -2$ $\frac{k}{2} + a$ $y = a$ $-\frac{k}{a} - 2$ O	Correct shape curve with two branches Asymptote drawn and labelled at $x = -2$ Asymptote drawn and labelled at $y = a$, where a is positive x -intercept labelled $-\frac{k}{a} - 2$ y -intercept labelled $\frac{k}{2} + a$	B1 B1 B1 B1
6.14 (b)	$0 = \frac{k}{-2.6 + 2} + a \text{and} 6.5 = \frac{k}{0 + 2} + a$ $0.6a = k$ $13 - 2a = k$ $a = 5 \text{and} k = 3$	For both substitutions Two simplified equations in a and k Solving simultaneously to find both values	M1 M1 A1
	Total		8 marks

Question	Answer	Extra information	Marks
6.15 (a)	Identifying either $(x + 1)$ or $(x - 1)$ as a factor	Finding the first factor	M1
	$x^3 - x = x(x^2 - 1)$		
	=x(x+1)(x-1)	Fully factorising the expression	A1
6.15 (b)	$\frac{5x+1}{x^3 - x} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$	Correct structure and method	M1
	5x+1 = A(x+1)(x-1) + Bx(x-1) + Cx(x+1)		
	A = -1, B = -2, C = 3	One variable correct	A1
	$-\frac{1}{x} - \frac{2}{x+1} + \frac{3}{x-1}$	Fully correct partial fractions	A1
	Total		5 marks

Question	Answer	Extra information	Marks
6.16	$9^{x-1} = 27^y$		
	$\left(3^{2}\right)^{x-1} = \left(3^{3}\right)^{y}$	Writing both sides as powers of 3	M1
	2x - 2 = 3y		
	$y = \frac{2x - 2}{3}$		
	$\left(\frac{2x-2}{3}\right)^2 = 2x+2$	Substituting for y and simplifying	M1
	$(2x-2)^2 = 9(2x+2)$		
	$4\lambda - 6\lambda + 4 = 16\lambda + 16$		
	$4x^2 - 26x - 14 = 0$		
	$2x^{2}-13x-7=0$ $(2x+1)(x-7)=0$		
	(2x+1)(x-7) = 0		
	$x = -\frac{1}{2} \text{ or } x = 7$	Solving the quadratic	A1
	When $x = -\frac{1}{2}$, $y = -1$	Both solutions needed for mark	A1
	When $x = 7$, $y = 4$		
	Total		4 marks