

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 8 Equation of a straight line

Question	Answer	Extra information	Marks
8.1 (a)	$\frac{12-4}{7-3} = 2$	Finding the gradient of L_1	M1
	y - 4 = 2(x - 3)	Correct substitution	M1
	y = 2x - 2	Correct simplification	A1
8.1 (b)	y - (-2) = 2[x - (-3)] so $y + 2 = 2(x + 3)$	Correct substitution	M1
	(Alternatively: $y = 2x + c$, $-2 = -6 + c$, so $c = 4$)		
	y = 2x + 4	Correct simplification	A1
	Total		5 marks

Question	Answer	Extra information	Marks
	y - 5 = -1.5[x - (-2)]	Correct substitution	M1
8.2 (a)	1.5x + y = 2		
	3x + 2y = 4	Correct simplification	A1
	Perpendicular gradient = $\frac{2}{3}$	Identifying gradient	M1
8.2 (b)	$y + 3 = \frac{2}{3} \left[x - (-1) \right]$	Correct substitution	M1
	$y = \frac{2}{3}x - 2\frac{1}{3}$	Correct rearrangement	A1
	Total		5 marks
	When $y = 0$, $2x - 12 = 0$		
	x = 6		
83(2)	so A has coordinates (6,0)	Correct x-intercept	B1
0.3 (a)	When $x = 0$, $3y - 12 = 0$		
	y = 4		
	so B has coordinates $(0, 4)$	Correct y-intercept	B1
8.3 (b)	Area = $\frac{1}{2} \times 6 \times 4$	Substituting into area of triangle formula. Can be implied from correct answer.	M1
	= 12	Correct area	A1
	Total		4 marks

Question	Answer	Extra information	Marks
8.4 (a)	$m = \frac{4 - (-1)}{10 - (-2)} = \frac{5}{12}$	Finding the gradient of the line	B1
	$y - 4 = \frac{5}{12}(x - 10)$	Attempting to find the equation of the line with correct substitution	M1
	$y = \frac{5}{12}x - \frac{1}{6}$	Equation of line in correct form	A1
	When $x = 5$		
0.4.(1)	$y = \frac{5}{12} \times 5 - \frac{1}{6}$	Substituting $x = 5$	M1
0.4 (0)	$=1\frac{11}{12}$		
	No, the line L does not pass through $(5, 2)$	Correct conclusion	A1
	Total		5 marks
8.5	Line L_1 : $2y - x = 4$ has a gradient of $\frac{1}{2}$	Identifying gradient of L_1	M1
	Line L_2 : $m = \frac{5 - (-2)}{-5 - 9} = \frac{7}{-14} = -\frac{1}{2}$	Identifying gradient of L_2	M1
	Lines L_1 and L_2 are neither parallel nor perpendicular, as their gradients are not equal, and their product does not equal -1	Correct conclusion	A1
	Total		3 marks

Question	Answer	Extra information	Marks
	x = 1.8x + 32	Setting both variables equal	M1
8.6	0.8x = -32		
	x = -40	Solving the equation	A1
	Total		2 marks
	When $n = 0$, $P = 163$ and when $n = 5$, $P = 197$		
8.7 (a)	Gradient = $\frac{197 - 163}{5} = \frac{34}{5} = 6.8$	Finding gradient	M1
	Therefore, $P = 6.8n + 163$	Writing the equation in the form $y = mx + c$	M1A1
	When $n = 10$, $P = 6.8 \times 10 + 163 = 231$	Using the model to predict the price in 2020	M1A1
8.7 (b)	The model gives the price of a house in 2020 as $\pounds 231000$, which rounds to $\pounds 230000$ to 2 s.f. so the model is suitable.	Conclusion based on the value predicted by their model	A1
	Total		6 marks
9.9(a)	Line L_1 : $y - 4 = 2(x - 3)$ has a gradient of 2	Both gradients required for mark	B1
0.0 (a)	Line $L_2: y - 7 = -3(x - 7)$ has a gradient of -3		
	2(x-3) + 4 = -3(x-7) + 7	Forming an equation	M1
8.8 (b)	2x - 6 + 4 = -3x + 21 + 7	Attempting to solve equation	M1
	5x = 30		
	<i>x</i> = 6		
	y - 4 = 2(6 - 3)	Substituting for <i>x</i>	M1
	y = 12 - 6 + 4 = 10, so the point <i>P</i> is (6, 10)	Correct solution	A1

Question	Answer	Extra information	Marks
	Substituting $y = 0$ into L_1 or L_2 :	Attempting to find <i>x</i> -coordinates by substituting $y = 0$ into L_1 or L_2	M1
	$x = 1 \text{ at } A, \ x = \frac{28}{3} \text{ at } B$	Correctly finding both coordinates	A1
8.8 (c)	Area = $\frac{1}{2} \times \left(\frac{28}{3} - 1\right) \times 10$	Correct method for area using the difference between the x -intercepts as the base	M1
	$=\frac{125}{3}$	Correct area found, as simplified improper fraction	A1
	Total		9 marks
8.9 (a)	y = kx + c o.e.	Statement of standard linear model	B1
	$15 \times 7.50 - 15k - c = 43.25 \rightarrow 15k + c = 69.25$ o.e.	Substitution for 15 people	M1
8 Q (b)	$3 \times 7.50 - 3k - c = -13.75 \rightarrow 3k + c = 36.25$ o.e.	Substitution for 3 people	M1
0.9 (0)	c = 28 and $k = 2.75$		
	Therefore, $y = 2.75x + 28$	Correctly obtaining given answer	A1
8.9 (c)	It is the cost of renting the room.	Correct interpretation	B1
	7.50n - 2.75n - 28 = 0	Correct equation	M1
8.9 (d)	4.75n = 28		
	n = 5.89, therefore the teacher needs 6 people to make a profit.	Correct solution and rounding up to the nearest whole number	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	$\frac{3k-10}{1-k} \times \frac{k+2}{k} = -1$ $\frac{(k+2)(3k-10)}{k(1-k)} = -1$ $(k+2)(3k-10) = k(k-1)$	Correct equation linking gradients	M1
8.10 (a)	(k+2)(3k-10) = k(k-1) $3k^{2} - 10k + 6k - 20 = k^{2} - k$ $2k^{2} - 3k - 20 = 0$ (2k+5)(k-4) = 0 $k = -\frac{5}{2} \text{ or } k = 4$ Since $k > 0$, then $k = 4$	Deriving a quadratic Attempting to solve the quadratic. Can be implied from sight of $-\frac{5}{2}$ and 4 Correct k	M1 M1 A1

Question	Answer	Extra information	Marks
	Line $L_1: \frac{3k-10}{1-k} = \frac{12-10}{1-4}$	Finding one gradient by substitution	B1
	$=\frac{2}{-3}$ $=-\frac{2}{3}$		
8.10 (b)	Line L_2 : $\frac{k+2}{k} = \frac{4+2}{4}$ = $\frac{6}{4}$ = $\frac{3}{4}$	Finding the other gradient by substitution or by stating that it is the negative reciprocal of their other gradient and therefore $\frac{3}{2}$	B1
	2 Total		6 marks

Question	Answer	Extra information	Marks
	y = 2x + c	Finding the equation of L_1	M1
	$0 = 2 \times 1 + c$		
	<i>c</i> = -2		
	y = 2x - 2		
	y = -0.5x + c	Finding the equation of L_2	M1
	$0 = -0.5 \times 16 + c$		
	<i>c</i> = 8		
8 11	y = -0.5x + 8		
0.11			
	2x - 2 = -0.5x + 8	Finding the coordinates of the interception point	M1
	2.5x = 10		
	x = 4		
	$y = 2 \times 4 - 2$		
	= 6		
	$Area = 0.5 \times (16 - 1) \times 6$	Finding the area of the triangle using the y-coordinate of the	A1
	= 45	intercept as the height	
	Total		4 marks
8.12 (a)	$f(x) \ge -6$	Substituting $x = 4$ because this gives the minimum value of the function	B1

Question	Answer	Extra information	Marks
	$y = (x-4)^2 - 6$	Completing the square	M1
	$y + 6 = (x - 4)^2$		
8.12 (b)	$x - 4 = \sqrt{y + 6}$		
	$x = 4 + \sqrt{y + 6}$		
	$f^{-1}(x) = 4 + \sqrt{x+6}$	Correct inverse	A1
8.12 (c)	$f^{-1}(x) \ge 4$	Correct range. Range of inverse is the domain of the original function.	B1
	Total		4 marks
	$h = ka$ and $h = \frac{K}{p}$	Stating two valid equations	M1
8.13 (a)	Therefore, $ka = \frac{K}{p}$	Equating	M1
	$p = \frac{\left(\frac{K}{k}\right)}{a} = \frac{\text{a constant}}{a}, \text{ so } a \text{ is inversely proportional to } p$	Rearranging to produce result	A1
8.13 (b)	a = 14ph	The area painted is 14 square metres per person multiplied by the number of hours they work	B1
8 13 (c)	$490 = 14 \times 7 \times h$	Substituting <i>a</i> and <i>p</i> to find <i>h</i>	M1
0.13 (C)	h = 5 (hours)	Correct result	A1
	Total		6 marks

Question	Answer	Extra information	Marks
8.14 (a)	(x+2)(x-1) > 0	Factorising the expression	M1
	$x < -2$ and $x > 1$ or $\{x: x < -2\} \cup \{x: x > 1\}$	Correct range; can be written in set notation	A1
8.14 (b)	$-4 < x < 5$ or $\{x: -4 < x < 5\}$	Correct range; can be written in set notation	B1
8.14 (c)	$-4 < x < -2$ and $1 < x < 5$ or $\{x: -4 < x < -2\} \cup \{x: 1 < x < 5\}$	Correct overlap of the two ranges; can be written in set notation	B1
	Total		4 marks