

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \,\mathrm{m\,s^{-2}}$ unless stated otherwise in the question.

Chapter 18 Parametric equations

Question	Answer	Extra information	Marks
	t = x - 3		
18.1 (a)	$y = (x - 3)^2 - 1$	Correct substitution	M1
	$y = x^2 - 6x + 8$	Expanding	A1
18.1 (b)	From quadratic in part (a), y-intercept is (0, 8)	Identifying from the equation	B1
	$x^{2} - 6x + 8 = 0$ $(x - 2)(x - 4) = 0$		
	(x-2)(x-4) = 0	Attempting to solve quadratic	M1
	Therefore, x-intercepts at $(2,0)$ and $(4,0)$	Correct <i>x</i> -intercepts	A1

Question	Answer	Extra information	Marks
	Total		8 marks
	$t = \frac{x+1}{3}$	Correct substitution	M1
	$y = \left(\frac{x+1}{3}\right)^2 - 4$ $y+4 = \frac{x^2 + 2x + 1}{9}$ $9y+36 = x^2 + 2x + 1$ $9y = x^2 + 2x - 35$		
18.2 (a)	$y + 4 = \frac{x^2 + 2x + 1}{9}$		
	$9y + 36 = x^2 + 2x + 1$		
	$9y = x^2 + 2x - 35$		
	$y = \frac{(x+7)(x-5)}{9}$	Correct rearrangement	A1
18.2 (b)	The curve is only defined for $-13 < x < 11$	Restricted domain. Suitable reason.	B1
	Total		3 marks
	$x^2 = 9\sin^2 t$	Squaring both equations	M1
	$y^{2} = 9\cos^{2} t$ $x^{2} + y^{2} = 9\sin^{2} t + 9\cos^{2} t$		
18.3 (a)	$x^2 + y^2 = 9\sin^2 t + 9\cos^2 t$	Finding the sum	M1
	$x^2 + y^2 = 9(\sin^2 t + \cos^2 t)$		
	$x^2 + y^2 = 9$	Use of trigonometric identity $\sin^2 t + \cos^2 t \equiv 1$	A1
	Since this is a circle with centre $(0,0)$ and radius 3	From knowledge of the graph	
18.3 (b)	the intercepts are $(3,0)$, $(-3,0)$, $(0,3)$ and $(0,-3)$	Two correct intercepts	B1
		Other two correct intercepts	B1

Question	Answer	Extra information	Marks
	Total		5 marks
	$x-2 = 4 \sin t$ and $y-3 = 4 \cos t$ $(x-2)^2 = 16 \sin^2 t$	Rearranging	M1
10.4()	$(y-3)^2 = 16\cos^2 t$ $(x-2)^2 + (y-3)^2 = 16\sin^2 t + 16\cos^2 t$ $(x-2)^2 + (y-3)^2 = 16(\sin^2 t + \cos^2 t)$	Squaring both equations	M1
18.4 (a)	$(x-2)^2 + (y-3)^2 = 16\sin^2 t + 16\cos^2 t$	Adding the equations	M1
	$(x-2)^2 + (y-3)^2 = 16(\sin^2 t + \cos^2 t)$		
	$(x-2)^2 + (y-3)^2 = 16$	Use of trigonometric identity $\sin^2 t + \cos^2 t \equiv 1$	A1
18.4 (b)	Centre = $(2,3)$	Reading from equation	B1
18.4 (c)	Radius = 4	Reading from equation	B1
10 / (4)	$x = 1 + 3\sin t$	Recognising how the centre and radius of the previous circle	B1
18.4 (d)	$y = 2 + 3\cos t$	feature in the parametric form and applying	B1
	Total		8 marks

Question	Answer	Extra information	Marks
	$x^2 = \tan^2 t = \frac{\sin^2 t}{\cos^2 t}$	Squaring and converting tan to sin/cos	M1
	$=\frac{y}{1-y}$	Substituting y and $1 - y$	M1
18.5 (a)	$x^{2}(1-y) = y$ $x^{2} - x^{2}y = y$		
10.5 (u)			
	$x^2 = y + x^2 y$		
	$x^2 = y(1+x^2)$		
	$y = \frac{x^2}{1 + x^2}$	Completing the rearrangement	A1
	$kx = \frac{x^2}{1+x^2} \implies kx(1+x^2) = x^2$ $kx + kx^3 - x^2 = 0 \implies kx^2 - x + k = 0$ $b^2 - 4ac > 0 \implies 1 - 4k^2 > 0$	Equating and rearranging	M1
	$kx + kx^3 - x^2 = 0 \implies kx^2 - x + k = 0$		
18.5 (b)	$b^2 - 4ac > 0 \implies 1 - 4k^2 > 0$	Use of the discriminant	M1
	(1+2k)(1-2k) > 0		
	$k < -\frac{1}{2} \text{or} k > \frac{1}{2}$	Correct range for k	A1
	Total		6 marks

Question	Answer	Extra information	Marks
	$t = \log_2 x$	Correct substitution	M1
	$y = (\log_2 x)^2 - 4\log_2 x$ $y = \log_2 x(\log_2 x - 4)$ $y = \log_2 x(\log_2 x - \log_2 16)$		
18 6 (a)	$y = \log_2 x (\log_2 x - 4)$		
10.0 (4)	$y = \log_2 x (\log_2 x - \log_2 16)$	Making 4 into log ₂ 16 rearrangement	M1
	$y = \log_2 x (\log_2 x - \log_2 16)$ $y = \log_2 x \times \log_2 \frac{x}{16}$	Use of log rule to obtain correct answer	A1
	$y = t^2 - 4t$		
18.6 (b)	$y = t^2 - 4t$ $= (t - 2)^2 - 4$	Completing the square	M1
10.0 (0)	Coordinates (4, –4)	Using the value of the parameter at the minimum point to substitute back in to find x	A1
	$y = t^{2} - 4t = 0$ $t(t-4) = 0$ $t = 0, t = 4$	Setting $y = 0$ and solving for t	M1
18.6 (c)	t(t-4) = 0		
	$t = 0, \ t = 4$		
	$x = 2^0 = 1$ and $x = 2^4 = 16$	Solving for <i>x</i>	A1

Question	Answer	Extra information	Marks
18.6 (d)	y 5- 4- 3- 2- 1- 0-1- -2- -3- -4-	Correct x-intercepts Correct turning point at (4, -4) and correct end points at (1, 0) and (32, 5)	B1 B1 B1
	Total		10 marks
18.7 (a)	$0 = 10t - 5t^2$ $0 = 5t(2 - t)$	Setting $y = 0$	M1
	$t = 2$ $x = 10 \times 2$	Finding the value of <i>t</i> from the bracket and substituting into the equation for <i>x</i> equation	M1
	=20 (m)	Correct answer	A1

Question	Answer	Extra information	Marks
	$y = 10t - 5t^2$	Any valid method, such as completing the square	M1
	$y = -5(t^2 - 2t)$		
18.7 (b)	$y = 10t - 5t^{2}$ $y = -5(t^{2} - 2t)$ $= -5[(t - 1)^{2} - 1]$ $= 5 - 5(t - 1)^{2}$		
	$=5-5(t-1)^2$		
	Maximum height is 5 m	Correct answer	A1
18.7 (c)	$y = x - 5\left(\frac{x}{10}\right)^2$	Substituting	M1
	$y = x - \frac{5x^2}{100}$		
	$100y = 100x - 5x^2$ $20y = 20x - x^2$		
	$20y = 20x - x^2$	Completing method and correct answer	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	When $x = 0$	Substituting $x = 0$	M1
	$0 = \ln\left(t+1\right)$		
	$t + 1 = e^0$		
	t + 1 = 1 Therefore, $t = 0$	Solving for <i>t</i>	A1
18.8 (a)	$y = \frac{1}{4}(0^2 + 1)$	Substituting $t = 0$ into equation for y	M1
	4 (3 11)	substituting i = 0 into equation for y	1411
	$=\frac{1}{4}$		
	Therefore, the curve intersects the y-axis at $\left(0, \frac{1}{4}\right)$	Writing as coordinates	A1
	$x = \ln(t+1)$	Rearranging to make the parameter the subject so a substitution	B1
	$e^x = t + 1$	can be made	
	$t = e^x - 1$		
18.8 (b)	$y = \frac{1}{4} \Big[(e^x - 1)^2 + 1 \Big]$	Substituting into equation for <i>y</i>	M1
	$= \frac{1}{4} \Big[(e^{2x} - 2e^x + 1) + 1 \Big]$		
	$e^{x} = t + 1$ $t = e^{x} - 1$ $y = \frac{1}{4} \left[(e^{x} - 1)^{2} + 1 \right]$ $= \frac{1}{4} \left[(e^{2x} - 2e^{x} + 1) + 1 \right]$ $= \frac{1}{4} (e^{2x} - 2e^{x} + 2)$ Total	Expanding and rearranging to obtain the required result	A1
	Total		7 marks

Question	Answer	Extra information	Marks
18.9 (a)	15 = 50 + 5d	Substituting the given term into the formula	M1
16.9 (a)	d = -7	Correct value	A1
18.9 (b)	$15 = a + 3 \times 4$ $a = 15 - 12$	Using knowledge of the fourth term and common difference to find the first term	M1
	= 3	Correct calculation	A1
	$15 = 1920 \times r^7$	Formula for the eighth term	M1
18.9 (c)	$r^7 = \frac{1}{128}$		
	$r = \frac{1}{2}$	Correct solution	A1
	Total		6 marks
	Substituting $\frac{1}{2}$ into the expression:	Use of the factor theorem	M1
18.10 (a)	$2\left(\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^2 - 18\left(\frac{1}{2}\right) + 8$		
	$= \frac{1}{4} + \frac{3}{4} - 9 + 8$		
	=0	Correct calculation	A1
18.10 (b)	$(2x-1)(x^2+2x-8)$ $(2x-1)(x-2)(x+4)$	Finding the quadratic bracket by any method	M1
	(2x-1)(x-2)(x+4)	For full factorisation	M1
	x = 0.5, x = 2, x = -4	Correct solutions obtained from brackets	A1

Question	Answer	Extra information	Marks
18.10 (c)	x = -0.5, x = -2, x = 4	Numbers multiplied by -1 since it is a reflection in the <i>y</i> -axis	B1
	Total		6 marks