

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 20 Gradients and graphs

Question	Answer	Extra information	Marks
	f'(x) = 6x + 2	Attempting to differentiate	M1
20.1 (a)		Correct derivative	A1
	f'(2) = 14	Evaluating correctly	A1
20.1 (b)	y = 15	y-value at $x = 2$	B1
	y - 15 = 14(x - 2)	Use of any correct formula	M1
	y = 14x - 13	Correct equation	A1

Question	Answer	Extra information	Marks
	$m_{\rm N} = -\frac{1}{14}$	Correct gradient	B1
20.1 (c)	$y - 15 = -\frac{1}{14} \left(x - 2 \right)$	Use of any correct formula with their $m_{\rm N}$	M1
	$y = -\frac{1}{14}x + \frac{106}{7}$ (o.e.)	Correct equation	A1
20.1 (d)	$x = -\frac{1}{3}$	Correct answer	B1
20.1 (e)	$3\left(-\frac{1}{3}\right)^{2} + 2\left(-\frac{1}{3}\right) - 1 = -\frac{4}{3}$ Hence coordinates are $\left(-\frac{1}{3} - \frac{4}{3}\right)$	Correct coordinates	B1
20.1 (f)	$\mathbf{f}^{\prime\prime}(x) = 6$	Correct answer	B1
20.1 (g)	f''(x) is positive so the turning point is a minimum.	Correct answer	B1
20.1 (h)	$f''(x) \ge 0$ for all x so the curve is convex.	Correct answer	B1
	Total		14 marks
20.2 (a)	$f'(x) = 3x^2 - 4x + 4$	Attempting to differentiate	M1
		Correct derivative	A1
	f'(1) = 3 - 4 + 4		
	= 3	Correct gradient	A1

Question	Answer	Extra information	Marks
	y = 0	Identifying <i>y</i> -value at $x = 1$	B1
20.2 (b)	y - 0 = 3(x - 1)	Use of any correct formula	M1
	y = 3x - 3	Correct equation	A1
	$x^3 - 2x^2 + 4x - 3 = 3x - 3$	Equating two expressions	M1
	$x^3 - 2x^2 + x = 0$		
20.2 (c)	$x(x-1)^2 = 0$	Attempting to solve cubic	M1
20.2 (C)	Hence $x = 0$ or 1	Correct <i>x</i> -values	A1
	Hence <i>x</i> -coordinate at $P = 0$ and $y = -3$		
	<i>P</i> (0, -3)	Correct coordinates	A1
	$f''(z) = (z + z) f''(z) = 0$ and $z = \frac{2}{2}$	Attempting to find f"	M1
	$1^{(x)} = 6x - 4 \implies 1^{(x)} = 0 \text{ when } x = \frac{1}{3}$	Correct solution of $f''(x) = 0$	A1
20.2 (d)	$f\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^3 - 2\left(\frac{2}{3}\right)^2 + 4\left(\frac{2}{3}\right) - 3$	Substituting their x into f	M1
	$=-\frac{25}{27}$		
	Point of inflection is at $\left(\frac{2}{3}, -\frac{25}{27}\right)$	Correct coordinates	A1
	$f''\left(\frac{19}{30}\right) = -\frac{1}{5}$ and $f''\left(\frac{21}{30}\right) = \frac{1}{5}$ so change of sign; therefore, it	Any valid explanation	A1
	is a point of inflection.		

Question	Answer	Extra information	Marks
	$\mathbf{f'}\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) + 4$	Substituting their <i>x</i> into f'	M1
20.2 (e)	$=\frac{8}{3}\neq 0$		
	Hence the point of inflection is not stationary.	Correct conclusion	A1
	Total		17 marks
	$f'(x) = 1 - 4x^{-2}$	Differentiating	M1A1
20.3 (a)	$\mathbf{f'}\left(\frac{1}{2}\right) = -15$	Correct gradient of curve	A1
	$m_N = \frac{1}{15}$	Correct normal gradient	A1
	$y = \frac{17}{2}$	Identifying <i>y</i> -value for $x = \frac{1}{2}$	B1
	$y - \frac{17}{2} = \frac{1}{15} \left(x - \frac{1}{2} \right)$	Use of any correct formula	M1
	$y = \frac{1}{15}x + \frac{127}{15}$ (o.e.)	Correct equation	A1

Question	Answer	Extra information	Marks
	$1 - 4x^{-2} = 0$	Attempting to solve $f'(x) = 0$	M1
	x = 2	Correct <i>x</i> -coordinate	A1
20.3 (b)	f(2) = 2 + 2 = 4	Correct y-coordinate	A1
20.3 (0)	Hence turning point is at (2, 4)		
	$\mathbf{f}''(x) = 8x^{-3}$	Attempting to find f"	M1
	f''(2) = 1 (> 0) so it is a minimum point.	Correct conclusion	A1
20.3 (c)	$x \ge 2$	Correct answer	B1
20.3 (d)	f''(x) is positive for all $x > 0$	Correct conclusion	B1
	Total		14 marks
	$f'(x) = 6x^2 - 4$	Attempting to differentiate	M1
		Correct derivative	A1
	At A: $f'(1) = 2$ and $f(1) = 3$	Correct coordinates for A	A1
	y - 3 = 2(x - 1)	Use of any correct formula	M1
	y = 2x + 1	Correct equation	A1
20.4	At B: $f'(4) = 92$ and $f(4) = 117$ y - 117 = $92(x - 4)$	Correct coordinates for B	A1
	y = 92x - 251	Correct equation	A1
	<i>C</i> has <i>x</i> -coordinate where $2x + 1 = 92x - 251 \implies x = \frac{14}{5}$	Equating lines and attempting to solve	M1
	When $x = \frac{14}{5}$, $y = \frac{33}{5}$, so the coordinates of C are $\left(\frac{14}{5}, \frac{33}{5}\right)$	Correct coordinates for C	A1

ISBN 9781382057707

Question	Answer	Extra information	Marks
	Total		9 marks
	$f'(x) = 1 + \cos x$	Attempting to differentiate	M1
20.5 (a)	Hence $f'\left(\frac{\pi}{2}\right) - \frac{3}{2}$	Correct derivative	A1
	Hence $\left[\left(3 \right)^{-} \right]_{2}$	Correct gradient	A1
	$y = \frac{\pi}{3} + \frac{\sqrt{3}}{2}$	Identifying <i>y</i> -value at $x = \frac{\pi}{3}$	B1
20.5 (b)	$y - \left(\frac{\pi}{3} + \frac{\sqrt{3}}{2}\right) = \frac{3}{2}\left(x - \frac{\pi}{3}\right)$	Use of any correct formula	M1
	$y = \frac{3}{2}x - \frac{\pi}{6} + \frac{\sqrt{3}}{2}$ o.e.	Correct equation	A1
	$f''(x) = -\sin x$	Correct second derivative	B1
	$-\sin \pi = 0$ and hence $f''(x) = 0$	Evaluating $f''(\pi)$	B1
20.5 (c)	$-\sin 0.9\pi = -0.309$		
	$-\sin 1.1\pi = 0.309$		
	Since the second derivative changes sign either side of the point, it is a point of inflection.	Correct explanation	B1
	Total		9 marks
20.6 (a)	$f'(x) = 2 - 3e^{3x}$	Attempting to differentiate twice	M1
	$f''(x) = -9e^{3x}$	Correct second derivative	A1
20.0 (u)	Since e^{3x} is positive for all x, f''(x) is negative for all x, so f(x) is concave for all x	Correct explanation	A1

Question	Answer	Extra information	Marks
	$2 = 3e^{3x}$	Attempting to solve $f'(x) = 0$	M1
20.6 (b)	$x = \frac{1}{3} \ln\left(\frac{2}{3}\right) $ o.e.	Correct <i>x</i> -coordinate. Must be exact.	A1
20.6 (c)	$x \ge \frac{1}{3} \ln\left(\frac{2}{3}\right)$	Correct answer	B1
	Total		6 marks
	$f(x) = 3x - 1 + 2x^{-1}$	Attempting to write in index form and differentiating	M1
	$f'(x) = 3 - 2x^{-2}$	Correct derivative	A1
	Hence $3 = 2x^{-2} \implies x = \sqrt{\frac{2}{3}}$	Attempting to solve $f'(x) = 0$	M1
20.7 (a)	$y = 3\sqrt{\frac{2}{3}} - 1 + 2\sqrt{\frac{3}{2}}$		
	So the coordinates of the turning point are		
	$\left(\sqrt{\frac{2}{3}}, \ 3\sqrt{\frac{2}{3}} - 1 + 2\sqrt{\frac{3}{2}}\right)$	Both coordinates correct. Must be exact.	A1
	$f''(x) = 4x^{-3}$	Correct second derivative	A1
20.7 (b)	When $x = \sqrt{\frac{2}{3}}$, f''(x) is positive so turning point is a minimum.	Correct explanation	B1
20.7 (c)	$f''(x) = \frac{4}{x^3}$ which can never take a zero value.	Correct explanation	B1

Question	Answer	Extra information	Marks
	Total		7 marks
	$f''(x) = \frac{1}{2} + \frac{3}{2} + \frac{1}{2}$	Attempting to differentiate	M1
20.8 (a)	$1(x) = \frac{-+-x^2}{x+2}$	Correct derivative	A1
	For all $x > 0$, $f'(x)$ is positive so the function is increasing.	Correct conclusion	A1
	$f''(x) = 1 + 3 - \frac{1}{2}$	Attempting to find f"	M1
	$\Gamma'(x) = -\frac{1}{x^2} + \frac{1}{4}x^2$	Correct second derivative	A1
	Hence $\frac{1}{x^2} = \frac{3}{4}x^{-\frac{1}{2}} \Longrightarrow \frac{4}{3} = x^{\frac{3}{2}}$	Attempting to solve $f''(x) = 0$	M1
20.8 (b)	$x = \sqrt[3]{\frac{16}{9}} \ (= 1.211)$	Correct <i>x</i>	A1
	f''(1.2) = -0.00979	Correct strategy to show change of sign	M1
	f''(1.22) = 0.00715		
	Since the second derivative changes sign, the point is a point of inflection.	Correct conclusion	A1
20.8 (c)	$\mathbf{f'}\left(\sqrt[3]{\frac{16}{9}}\right) = 2.47$		
	$f'(x) \neq 0$ so it is not a stationary point of inflection.	Must show that $f'(x) \neq 0$	B1
	Total		10 marks

Question	Answer	Extra information	Marks
	$f'(x) = \frac{1}{x} - 2x^{-2}$	Attempting to differentiate	M1
	f'(1) = -1	Gradient at $x = 1$	A1
20.9 (a)	<i>y</i> = 2	Identifying <i>y</i> -coordinate for $x = 1$	A1
	y - 2 = -(x - 1)	Use of any correct formula	M1
	so $y = -x + 3$	Correct equation	A1
	$1 - 2r^{-2} \rightarrow r - 2$	Attempting to solve $f'(x) = 0$	M1
20.9 (b)	$\begin{array}{c} & -2x \\ x \end{array} \longrightarrow x = 2 \\ \end{array}$	Correct <i>x</i> -coordinate	A1
	$y = \ln 2 + 1$	Correct y-coordinate. Must be exact.	A1
20.9 (c)	$f''(x) = -\frac{1}{x^2} + 4x^{-3}$	Attempting to find second derivative	M1
	When $x = 2$, $f''(x) = -\frac{1}{4} + \frac{1}{2} = \frac{1}{4}$	Substituting their x into f"	M1
	which is positive, so the point is a minimum.	Correct conclusion	A1
	Total		11 marks

Question	Answer	Extra information	Marks
	$f'(x) = 4x^3 - 12x^2 + 16$	Attempting to differentiate	M1
		Correct derivative	A1
	Solving $4x^3 - 12x^2 + 16 = 0$ gives $x = -1$ or $x = 2$	Correct solutions for $f'(x) = 0$	A1
	At $x = -1$, $y = -10$		
20.10	At $x = 2$, $y = 17$	Both points identified	A1
	$f''(x) = 12x^2 - 24x$	Attempting to find f"	M1
	At $x = -1$, $f''(x) = 36$ (minimum point)	Identifying minimum	A1
	At $x = 2$, $f''(x) = 0$	Correct strategy to show change of sign	M1
	At $x = 1.9$, $f''(x) = -2.28$		
	At $x = 2.1$, $f''(x) = 2.52$		
	Change of sign means (stationary) point of inflection.	Identifying point of inflection	A1
	Total		8 marks

Question	Answer	Extra information	Marks
20.11	y = f'(x) y = f(x) y = f(x)	Root at maximum Root at minimum Turning point at point of inflection. Must be below <i>x</i> -axis. Overall shape is quadratic	B1 B1 B1 B1
	Total		4 marks
20.12 (a)	$30\pi = \pi r^2 h \Longrightarrow h = \frac{30}{r^2}$	Finding an expression for <i>h</i>	B1
	$A = 2\pi r \times \frac{30}{r^2} + \pi r^2$	Substituting their <i>h</i> into correct area formula	M1
	$= 60\pi r^{-1} + \pi r^2$	Correct conclusion	A1

Question	Answer	Extra information	Marks
20.12 (b)	$\frac{\mathrm{d}A}{\mathrm{d}r} = -\frac{60\pi}{r^2} + 2\pi r$	Attempting to find derivative	M1
	$\frac{60\pi}{r^2} = 2\pi r$ $r = \sqrt[3]{30}$	Attempting to solve $\frac{dA}{dr} = 0$	M1
	= 3.107 = 3.11 (3 s.f.)	Correct r	A1
	$A = 91.0 \text{ cm}^2$	Substitute their <i>r</i> into surface area formula. Can be implied from correct answer.	M1
		Correct area	A1
20.12 (c)	$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = \frac{120\pi}{r^3} + 2\pi$	Attempting to find second derivative and substituting their r into it	M1
	When $r = 3.11$, second derivative = 18.849		
	This is positive, so it is a maximum point.	Correct justification	A1
	Total		10 marks

Question	Answer	Extra information	Marks
20.13	$u_{205} = 4 + 204 \times 3$	Attempting to find <i>u</i> ₂₀₅	M1
	= 616	Correct value	A1
	$\frac{n}{2} [8 + (n-1) \times 3] < 616$	Use of correct formula	M1
	$\Rightarrow 3n^2 + 5n - 1232 < 0$	Identifying correct quadratic	A1
	n = 19.448 (ignore negative solution)		
	So <i>n</i> = 19	Correct <i>n</i>	A1
	Total		5 marks
20.14	$3x - 20^\circ = \cos^{-1} \left(-0.35 \right)$	Use of inverse cosine	M1
	= 110.487	Principal solution	A1
	and 249.512, 470.487	Use of $360^\circ \pm \alpha$	M1
	$x = 43.5^{\circ}, 89.8^{\circ}, 163.5^{\circ}$	Identifying all required values	A1
		All values of <i>x</i> correct	A1
	Total		5 marks