

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient Use advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 24 Differential equations

Question	Answer	Extra information	Marks
24.1 (a)	$\int (3x^2 + 2x) dx = x^3 + x^2 + c$	Attempting to integrate Must include '+ c '	M1 A1
24.1 (b)	$3 = 13 + 12 + c \Longrightarrow c = 1$ Hence $y = x3 + x2 + 1$	Using the point in an equation involving <i>c</i> Correct answer	M1 A1
	Total		4 marks
24.2 (a)	$\int e^{2x} dx = \frac{1}{2}e^{2x} + c$	Attempting to integrate Must include '+ c'	M1 A1

Question	Answer	Extra information	Marks
	$4 = \frac{1}{2}e^0 + c \implies c = \frac{7}{2}$	Using the point in an equation involving c	M1
24.2 (b)	Hence $8 = \frac{1}{2}e^{2x} + \frac{7}{2} \implies e^{2x} = 9$	Setting up and solving equation given their c	M1
	$x = \ln 3, y = 8$	Correct answer	A1
	Total		5 marks
24.3	$\int \cos 3x dx = \frac{1}{3} \sin 3x + c$	Attempting to integrate. Must include '+ c '.	M1A1
	$3 = \frac{1}{3}\sin\left(\frac{3\pi}{2}\right) + c \Longrightarrow c = \frac{10}{3}$	Substituting boundary condition	M1
	Hence $y = \frac{1}{3}\sin 3x + \frac{10}{3}$	Correct equation	A1
	Total		4 marks

Question	Answer	Extra information	Marks
	$\int \tan y dy = \int \frac{x}{x} dx$	Attempting to separate the variables	M1
	$\int \tan y dy = \int \frac{1}{x^2 - 1} dx$	Correct equation	A1
	$\ln \sec y = \frac{1}{2} \ln x^2 - 1 + c$	Attempting to integrate	M1
	$\frac{1}{2} \frac{1}{2} \frac{1}$	Must include '+c'	A1
24.4	$\ln \sec y = \ln\left \left(x^2 - 1\right)^{\frac{1}{2}}\right + c$	Using rule of logs	M1
	sec $y = e^{c} e^{\ln\left (x^{2}-1)^{\frac{1}{2}}\right }$	Exponentials of both sides	M1
	sec $y = e^{c} (x^{2} - 1)^{\frac{1}{2}}$	Removing logs	M1
	sec $y = k\sqrt{x^2 - 1}$ as required	Complete correct derivation	A1
	Total		8 marks
24.5 (a)	$\int \frac{1}{y} \mathrm{d}y = \int \left(x^2 + x \right) \mathrm{d}x$	Attempting to separate the variables	M1
	$\ln y = \frac{1}{3}x^3 + \frac{1}{2}x^2 + c$	Attempting to integrate	M1
	$y = e^{\frac{1}{3}x^3 + \frac{1}{2}x^2 + c}$	Attempting to rearrange	M1
	$y = A e^{\frac{1}{3}x^3 + \frac{1}{2}x^2}$	Correct equation	A1

Question	Answer	Extra information	Marks
	$1 = Ae^{\frac{1}{3} \times 0^{3} + \frac{1}{2} \times 0^{2}} = A$ Hence $v = e^{\frac{1}{3}x^{3} + \frac{1}{2}x^{2}}$	Constant of integration	B1
24.5 (b)	$\frac{dy}{dx} = 0 \Longrightarrow x = -1 \text{ or } 0$	Solving derivative equal to 0	M1
	Hence stationary points at (0, 1) and $\left(-1, e^{\frac{1}{6}}\right)$	Correct answer	A1
	Total		7 marks

Question	Answer	Extra information	Marks
	$2x^2 + 5x + 2 = (2x + 1)(x + 2)$	Attempting to factorise and finding partial fractions	M1
	$\frac{-6}{(2x+1)(x+2)} = \frac{A}{x+2} + \frac{B}{2x+1}$		
	-6 = A(2x + 1) + B(x + 2)		
	$\frac{-6}{(2x+1)(x+2)} = \frac{2}{x+2} - \frac{4}{2x+1}$	Correct partial fractions	A1
	$\int \frac{1}{y-1} \mathrm{d}y = \int \left(\frac{2}{x+2} - \frac{4}{2x+1}\right) \mathrm{d}x$		
24.6 (a)	$\ln y-1 = 2\ln x+2 - 2\ln 2x+1 + c$	Separating variables	M1
	$\ln y-1 = \ln\left \frac{(x+2)^2}{(2x+1)^2}\right + c$	Attempting to integrate, at least one term correct	M1
	$y = A \frac{(x+2)^2}{(2x+1)^2} + 1$		
	$v = A \left(\frac{x+2}{x+2}\right)^2 + 1$	Attempting to rearrange into the form $y = \dots$	M1
	(2x+1)	Correct equation. Must include <i>A</i> (or equivalent).	A1
24.6 (b)	$3 = A \times \frac{3^2}{3^2} + 1 \Longrightarrow A = 2$	Substituting given point	M1
	Hence $y = 2\left(\frac{x+2}{2x+1}\right)^2 + 1$	Correct result	A1

Question	Answer	Extra information	Marks
	Total		8 marks
	$\int e^{-y} dy = \int x dx$	Separating the variables	M1
	$-e^{-y} = \frac{1}{2}x^2 + c$	Attempting to integrate	M1
	When $x = 3$, $y = \ln 4$		
24.7	$-\frac{1}{4} = \frac{9}{2} + c$	Substituting into their result	M1
	Hence $c = -\frac{19}{4}$	Correct c	A1
	$e^{-y} = \frac{19}{4} - \frac{1}{2}x^2 \Longrightarrow y = -\ln\left \frac{19}{4} - \frac{1}{2}x^2\right $	Attempting to rearrange	M1A1
	Total		6 marks
	$\int \frac{1}{y} \mathrm{d}y = \int x \cos x \mathrm{d}x$	Separating the variables	M1
24.8 (a)	$\ln y = x \sin x - \int \sin x dx$	Correct integral on LHS	A1
	$\ln y = x \sin x + \cos x + c$	Use of integration by parts on RHS	M1
	Hence $y = Ae^{x \sin x + \cos x}$	Correct integral on RHS	A1
		Correct answer. Must include A	A1
218 (b)	$1 = Ae^1 \Longrightarrow A = e^{-1}$	Substituting	M1
24.8 (b)	Hence $y = e^{x \sin x + \cos x - 1}$	Correct equation	A1

Question	Answer	Extra information	Marks
	Total		7 marks
24.0 (a)	$k = 3 \div 150$	Dividing	M1
24.9 (a)	= 0.02	Correct k	A1
24.0 (b)	$P = 240\mathrm{e}^{0.02t}$	e^{kt} for their k	M1
24.9 (0)	$A = 240 \text{ and } \alpha = 0.02$	Correct answer	A1
	$480 = 240e^{0.02t}$	Setting their (b) = 480	M1
	$2 = e^{0.02t}$		
24.9 (c)	Hence $0.02t = \ln 2$	Attempting to solve	M1
	t = 34.657		
	t = 35 months	Correct t	A1
24.9 (d)	The population is predicted to increase without limit.	Any valid limitation	B1
	Total		8 marks
	$\int \frac{1}{H - 20} dH = -\int k dx$	Separating the variables	M1
24.10 (a)	$\ln H-20 = -kx + c$	Attempting to integrate	M1A1
	$H - 20 = \mathrm{e}^{-kt + c}$		
	Hence $H = Ae^{-kt} + 20$	Correct expression in the form $H = \dots$	A1
	A = 160		B1
24.10 (b)	$120 = 160e^{-k \times 8} + 20$	Attempting to find k with their A	M1
24.10 (b)	k = 0.05875		
	k = 0.059	Correct <i>k</i>	A1

Question	Answer	Extra information	Marks
	$H = 160e^{-0.059 \times 20} + 20$	Substituting into their (b)	M1
24.10 (c)	= 69.41		
	= 69.4 °C	Correct answer	A1
	Total		9 marks
24.11 (a)	$\frac{1}{x(500-x)} = \frac{A}{x} + \frac{B}{500-x}$	Choosing correct form	M1
	1 = A(500 - x) + Bx	Substituting or equating coefficients	M1
	Hence $A = \frac{1}{500}$ and $B = \frac{1}{500}$	Correct A and B	A1

Question	Answer	Extra information	Marks
	$\frac{1}{500} \int \left(\frac{1}{P} + \frac{1}{500 - P}\right) dP = \int \frac{1}{100} dt$	Separating the variables and using their (a)	M1
	$\frac{1}{500} \left(\ln P - \ln 500 - P \right) = \frac{1}{100} t + c$	Attempting to integrate	M1
	$\ln \left \frac{P}{500 - P} \right = 5t + c$	Correct equation	A1
24.11 (b)	When $t = 0$, $P = 450$: $c = \ln 9$	Attempting to find <i>c</i>	M1
	Hence $\ln \left \frac{P}{500 - P} \right - \ln 9 = 5t$		
	$\frac{P}{4500-9P} = e^{5t} \Longrightarrow Pe^{-5t} = 4500-9P$		
	Hence $P = \frac{4500}{9 + e^{-5t}}$	Correct equation in the form $P = \dots$	A1
24.11 (c)	No, the population will tend to $4500 \div 9 = 500$	Correct method and reason	M1A1
	Total		10 marks

Question	Answer	Extra information	Marks
	$x = (9-u)^2 \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = -2(9-u)$	Attempting to find du	M1
	$\int \frac{1}{9 - \sqrt{x}} dx = \int \frac{-2(9 - u)}{u} du$	Attempting to substitute	M1
24.12 (a)	$-\int \left(\frac{18}{u} - 2\right) du = -18 \ln u + 2u + k$	Attempting to integrate	M1
	$= 18 - 2\sqrt{x} - 18\ln 9 - \sqrt{x} + k$	Correct integral in x	A1
	$= -2\sqrt{x} - 18\ln\left 9 - \sqrt{x}\right + c$	Correct simplified answer. Must include '+ c'.	A1
	$\int \frac{1}{9 - \sqrt{x}} \mathrm{d}x = \frac{1}{10} \int t^{\frac{1}{5}} \mathrm{d}t$	Separating the variables	M1
	$-2\sqrt{x} - 18\ln\left 9 - \sqrt{x}\right = \frac{1}{12}t^{\frac{6}{5}} + c$	Attempting to integrate	M1A1
24.12 (b)	When $t = 0$: $c = -2\sqrt{2} - 18\ln(9 - \sqrt{2})$	Attempting to find c using boundary condition	M1A1
	When $x = 8$:		
	$-2\sqrt{8} - 18\ln\left(9 - \sqrt{8}\right) = \frac{1}{12}t^{\frac{6}{5}} - 2\sqrt{2} - 18\ln\left(9 - \sqrt{2}\right)$	Attempting to substitute	M1
	Hence $t = 7.1657 = 7.17$ seconds	Correct <i>t</i>	A1
	Total		13 marks

Question	Answer	Extra information	Marks
	$V = 30000h \implies \frac{\mathrm{d}V}{\mathrm{d}h} = 30000$	Finding V and derivative	M1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 2000 - 120h$	Correct differential equation	B1
24.13 (a)	Hence $\frac{dh}{dt} = \frac{2000 - 120h}{30\ 000}$	Using connected rate of change formula	M1
	$=\frac{50-3h}{750}$	Correct simplification	A1
	$\int \frac{750}{50-3h} \mathrm{d}h = \int 1 \mathrm{d}t$	Separating the variables	M1
	$-250\ln 50-3h = t+c$	Attempting to integrate. Must include '+ c'.	M1A1
	Using $h = 30$ at $t = 0$ gives	Attempting to find c	M1
24.13 (b)	c = -922.219	Correct c	A1
	When $h = 25$:		
	$t = -250 \ln 25 + 922.219$	Substituting into their model	M1
	= 117.500		
	= 118 (s)	Correct time	A1
	Total		11 marks

Question	Answer	Extra information	Marks
	$(x-3)^2 + (y-4)^2 = 25$	Equation of circle	B1
	$(x-3)^2 + (mx-2-4)^2 = 25$	Substituting into their circle and attempting to expand	M1
	$x^2 - 6x + 9 + (mx)^2 - 12mx + 36 = 25$		
	$(1+m^2)x^2 - (6+12m)x + 20 = 0$	Forming three term quadratic	M1
24.14	Tangent: $b^2 - 4ac = 0$		
	Hence $[-(6+12m)]^2 - 4 \times (1+m^2) \times 20 = 0$	Use of discriminant to form three term quadratic	M1
	$64m^2 + 144m - 44 = 0$		
	Hence $m = -9 \pm 5\sqrt{5}$	Poth solutions correct	A 1
	Hence $m = \frac{1}{8}$	Both solutions correct	AI
	Total		5 marks
	$\frac{3}{-\sin 2r} = 1$	Use of double angle formule for sine	M1
	$\frac{-\sin 2x - 1}{2}$	Ose of double angle formula for sine	1011
	$\sin 2r - \frac{2}{2}$		
24.15	3112x - 3		
	Hence $2x = 0.729, 2.411, 7.012, 8.695$	Use of inverse sine to find principal solution	M1
	Hence $x = 0.36, 1.21, 3.51, 4.35$	One correct value	A1
		All correct values	A1
	Total		4 marks