

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 25 Numerical methods

Question	Answer	Extra information	Marks
25.1 (a)	f(-3) = -13; f(-2) = 1	Evaluating function at interval end points	M1
	Since there is a change of sign in the interval and the function is continuous, there must be at least one root.	Must state 'change of sign' and 'continuous'	A1
25.1 (b)	$x^3 = 5x + 1$	Attempting to rearrange	M1
	$x^2 = 5 + \frac{1}{x}$		
	Hence $x = \pm \sqrt{5 + \frac{1}{x}}$	Must see second step for mark	A1

Question	Answer	Extra information	Marks
	$x_1 = -2$	Evidence of using correct formula, -2 is sufficient	M1
25.1 (c)	$x_2 = -2.1213$	Two correct	A1
	$x_3 = -2.1280$	All three correct	A1
	f(-2.1275) = 0.00788	Use of suitable interval	M1
25.1 (d)	f(-2.1285) = -0.00069		
	There is a change of sign so the root is correct to 3 d.p.	Must state 'change of sign'	A1
	Total		9 marks
25.2 (a)	The change of sign is due to the presence of an asymptote.	Correct explanation	B1
	f(3.2) = 3.944; f(4) = -3	Evaluating function at interval end points. Must use value > 3	M1
25.2 (b)	Since there is a change of sign in the interval and the function is	Must state 'change of sign' and 'continuous'	A1
			+
25.2 (c)	$5 = \frac{\sqrt{x}}{x-3} \Longrightarrow x-3 = \frac{\sqrt{x}}{5}$	Attempting to rearrange	M1
	Hence $x = \sqrt{x}$	Correct on success	A 1
	Hence $x = \frac{-+5}{5}$	Correct answer	AI
25.2 (d)	$x_1 = 3.4$	Evidence of using correct formula, 3.4 is sufficient	M1
	$x_2 = 3.3688 (5 \text{ s.f.})$	Two correct	A1
	$x_3 = 3.3671 (5 \text{ s.f.})$	All three correct	A1
	f(3.3665) = 0.00628	Use of suitable interval	M1
25.2 (e)	f(3.3675) = -0.00659		
	There is a change of sign so the root is correct to 3 d.p.	Must state 'change of sign'	A1

Question	Answer	Extra information	Marks
	Total		10 marks
	f(0.5) = -0.3512; f(0.6) = 0.1554	Evaluating function at interval end points	M1
25.3 (a)	Since there is a change of sign in the interval and the function is continuous, there must be at least one root.	Must state 'change of sign' and 'continuous'	A1
	$f(x) = c^x + \frac{1}{2}$	Attempting to differentiate	M1
	$1(x) - e + \frac{1}{x^2}$	Correct derivative	A1
25.3 (b)	Hence $x_{n+1} = x_n - \frac{e^{x_n} - \frac{1}{x_n}}{e^{x_n} + \frac{1}{x_n^2}}$	Attempting to use the Newton–Raphson formula with their derivative	M1
	$x_1 = 0.5662$	Correct approximation	A1
25.3 (c)	$\frac{0.5671 - 0.5662}{0.5671} \times 100 = 0.1577$	Use of percentage change formula	M1
	= 0.16%	Correct answer	A1
	Total		8 marks
25.4 (a)	Where the curve and the line intersect $\sqrt{5x-2} = x$ So $5x-2 = x^2 \implies x^2 - 5x + 2 = 0$		
	Setting $f(x) = x^2 - 5x + 2$	Attempting to form a suitable function	M1
	f(4) = -2; f(5) = 2	Evaluating function at interval end points	M1
	Since there is a change of sign in the interval and the function is continuous, there must be at least one root.	Must state 'change of sign' and 'continuous'	A1

Question	Answer	Extra information	Marks
25.4 (b)	y y 3 The staircase converges on the root so the iteration formula can	Annotated graph showing staircase starting at $x = 3$ Correct answer and reason	M1 A1
25.4 (c)	Starting at $x = 1$, the iteration formula will converge to β	Correct explanation	B1
	Total		6 marks
25.5 (a)	f(1) = 0.8414; f(2) = -0.0907 Since there is a change of sign in the interval and the function is continuous, there must be at least one root.	Evaluating function at interval end points Must state 'change of sign' and 'continuous'	M1 A1

Question	Answer	Extra information	Marks
25.5 (b)	$\mathbf{f}'(x) = \cos x - 1$	Attempting to differentiate	M1A1
	Hence $x_{n+1} = x_n - \frac{\sin x_n - x_n + 1}{\cos x_n - 1}$	Attempting to use the Newton–Raphson formula with their derivative	M1
	$x_1 = 1 - \frac{\sin 1 - 1 + 1}{\cos 1 - 1} = 2.830$	One correct approximation	A1
	$x_2 = 2.050$	Both approximations correct	A1
25.5 (c)	The denominator of the fraction in the Newton–Raphson formula will equal zero (horizontal tangent).	Correct explanation	B1
	Total		8 marks
	h(3) = 14.1635; h(4) = -22.1285	Evaluating function at interval end points	M1
25.6 (a)	Since there is a change of sign in the interval and the function is continuous, there must be at least one root.	Must state 'change of sign' and 'continuous'	A1
25.6 (b)	$h'(t) = 30\cos t + 7\sin t - 2t$	Attempting to differentiate	M1
		Correct derivative	A1
25.6 (c)	$t_{n+1} = t_n - \frac{30\sin t_n - 7\cos t_n - {t_n}^2 + 12}{30\cos t_n + 7\sin t_n - 2t_n}$		
	$t_1 = 3 - \frac{30\sin 3 - 7\cos 3 - 3^2 + 12}{30\cos 3 + 7\sin 3 - 6}$	Use of their Newton–Raphson formula with $t_0 = 3$	M1
	= 3.4080 (4 d.p.)	Correct answer	A1

Question	Answer	Extra information	Marks
	h(3.3875) = 0.01116	Use of suitable interval	M1
25.6 (d)	h(3.3885) = -0.02640		
	There is a change of sign so the root is correct to 3 d.p.	Must state 'change of sign'	A1
	Total		8 marks
25.7 (a)	Missing values: 0.378, 0.276 (both 3 d.p.)	Each value correct	B1B1
	$A \sim \frac{1}{2} \frac{1}{1} (1 + 0.212 + 2(0.561 + 0.378 + 0.276))$	h = 0.5	B1
25.7 (b)	$A \sim \frac{-1}{2} \left\{ \frac{1+0.212+2(0.501+0.578+0.270)}{2} \right\}$	Correct trapezium rule method	M1A1
	$= 0.91 \text{ units}^2 (2 \text{ d.p.})$	Correct area	A1
25.7 (c)	Overestimate, because the curve is convex.	Correct conclusion and explanation	B1
25 7 (d)	$[(0.9105 - 0.88) \div 0.88] \times 100$	Use of percentage error formula	M1
25.7 (d)	= 3.47%	Correct answer	A1
	Total		9 marks
25.8 (a)	$\int x^2 e^{3x} dx = \frac{1}{3} x^2 e^{3x} - \int \frac{2}{3} x e^{3x} dx$	Use of integration by parts once	M1A1
	$=\frac{1}{3}x^{2}e^{3x} - \left[\frac{2}{9}xe^{3x} - \int\frac{2}{9}e^{3x}dx\right]$	Use of integration by parts twice	M1A1
	$=\frac{1}{3}x^{2}e^{3x}-\frac{2}{9}xe^{3x}+\frac{2}{27}e^{3x}+c$	Final integration	M1A1

Question	Answer	Extra information	Marks
25.8 (b)	$\left[\frac{1}{3}x^2e^{3x} - \frac{2}{9}xe^{3x} + \frac{2}{27}e^{3x}\right]_0^{\ln 2}$	Attempting to integrate their (a) and evaluating using limits given	M1
	$= \left[\frac{1}{3}(\ln 2)^{2}(8) - \frac{2}{9}(\ln 2)(8) + \frac{2}{27}(8)\right] - \frac{2}{27}$		
	$=\frac{14}{27}+\frac{8}{3}(\ln 2)^2-\frac{16}{9}\ln 2$	Correct answer	A1
	Total		8 marks
25.9	$\cos^4 x = (\cos^2 x)^2$	Writing $\cos^4 x$ in terms of \cos^2 and use of double angle formula	M1
	$= \left[\frac{1}{2}(1+\cos 2x)\right]^2$		
	$=\frac{1}{4}(1+2\cos 2x+\cos^2 2x)$	Attempting to expand	M1
	$= \frac{1}{4} + \frac{1}{2}\cos 2x + \frac{1}{4}\left[\frac{1}{2}(1+\cos 4x)\right]$	Use of double angle formula again and attempting to expand	M1
	$=\frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$	Correct expression	A1
	Total		4 marks