

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 30 Probability

Question	Answer	Extra information	Marks
30.1 (a)	Estimated number of days less than $15^{\circ}C = 4 + \frac{1}{3} \times 12$	Use of proportional reasoning to estimate frequency less than 15	M1
	P(less than 15 °C) = $\frac{8}{31}$	Correct answer	A1
30.1 (b)	$P(A \text{ and } B) = \frac{8}{31} \times \frac{27}{31}$	Multiplying answer from (a) by P(<i>B</i>)	M1
	= 0.225	Correct answer	A1
30.1 (c)	Assumption is reasonable since Perth and Hurn are very far apart.	Conclusion and reason	B1

Question	Answer	Extra information	Marks
	Total		5 marks
30.2 (a)	$ \begin{array}{c} S \\ 8 \\ 4 \\ 9 \\ 17 \\ 12 \\ 5 \\ D \end{array} $	Three intersecting circles with 25 in correct place 4 values in correct places – circles must be labelled Completely correct diagram	B1 B1 B1
30.2 (b)	$P(S \cup D) = \frac{71}{80}$	Allow follow through from answer in (a)	B1
30.2 (c)	$\mathbf{P}(M \cap D') = \frac{13}{80}$	Allow follow through from answer in (a)	B1
30.2 (d)	$P[S \cap (M \cap D')] = \frac{4}{80}$ $P[S (M \cap D')] = \frac{\frac{4}{80}}{\frac{13}{80}}$ $= \frac{4}{13}$	Writing or using probability of $\frac{4}{80}$ or frequency of 4 Calculating a conditional probability with $\frac{13}{80}$ or 13 in denominator Correct answer	M1 M1 A1
	Total		8 marks

Question	Answer	Extra information	Marks
30.3 (a)	$0.8 \times 0.012 + 0.2x = 0.02$	Using information on faulty processors to form and solve equation involving <i>x</i>	M1
	x = 0.052 = 5.2%	Correct answer	A1
30.3 (b)	The probability of a processor being faulty is different depending on which type it is.	Can use probabilities to justify, for example $P(F B) = 0.052 \neq 0.02$	B1
	$P(A \text{ and not faulty}) = 0.8 \times 0.988 (= 0.7904)$	Writing or using information	M1
30.3 (c)	$P(A \mid \text{not faulty}) = \frac{'0.7904'}{0.98}$	Calculating a conditional probability with 0.98 in denominator	M1
	= 0.807	Correct answer	A1
	Total		6 marks
	z = 0	Correct answer	B1
	(0.05 + x)(0.6 + x) = x	Using fact that A and C are independent to form a quadratic in x	M1
30.4	$x^2 - 0.35x + 0.03 = 0$	Solving quadratic	M1
30.4	x = 0.15	Specifying 0.15 only (0.2 gives sum of probabilities greater than 1)	A1
	y = 1 - (0.05 + 0.25 + 0.35 + 0.18 + 0.15)	Using the fact that probabilities sum to 1	M1
	y = 0.02	Correct answer	A1
	Total		6 marks

Question	Answer	Extra information	Marks
30.5 (a)	$\begin{array}{ccc} 0.95 & P \\ 0.02 & D & \\ 0.05 & P' \end{array}$	Tree diagram with branches as shown and 0.02 on correct branch	B1
	<	0.95 and 0.04 in correct places	B1
	$\begin{array}{c} 0.98 \\ D' \\ 0.96 \\ P' \end{array}$	Completely correct tree diagram	B1
	$P(P) = 0.02 \times 0.95 + 0.98 \times 0.04 \ (= 0.0582)$	Calculating probability of a positive result	M1
30.5 (b)	$P(D \mid P) = \frac{0.02 \times 0.95}{'0.0582'}$	Calculating a conditional probability with answer for probability of a positive result as denominator	M1
	= 0.326	Correct answer	A1
	Total		6 marks
30.6 (a)	$\mathbf{P}(A' \cup B) = \frac{42}{49}$	Correct answer	B1
30.6 (b)	$P(A \mid B') = \frac{\frac{7}{49}}{\frac{24}{49}}$	Using probability of $\frac{7}{49}$ or frequency of 7 and probability of $\frac{24}{49}$ or frequency of 24	M1
	$=\frac{7}{24}$	Correct answer	A1

Question	Answer	Extra information	Marks
	Total		3 marks
30.7 (a)	$\mathbf{P}(A \cap B) = \frac{2}{7} \times \frac{7}{20} \left(= \frac{1}{10} \right)$	Calculating probability of A and B	M1
	$P(A) = \frac{\frac{1}{10}}{\frac{3}{13}}$	Calculating probability with $\frac{3}{13}$ as denominator	M1
	$=\frac{13}{30}$	Correct answer	A1
30.7 (b)	$P(A' \cap B') = \frac{7}{20} - \frac{1}{10}$	Method for finding probability use probability of intersection found in (a)	M1
	$=rac{1}{4}$	Correct answer	A1
	Total		5 marks
30.8 (a)	4.3	Correct answer. Allow value greater than 4.2 and less than 4.4	B1
20.9 (L)	8.2 - 0.7	At least one correct then subtracting	M1
30.8 (b)	= 7.5	Allow value in range 7.4–7.6	A1
30.8 (c)	October	Also allow September	B1
	Total		4 marks
30.9 (a)	8300	Correct answer	B1

Question	Answer	Extra information	Marks
30.9 (b)	The coded data lies close to a straight line.	Must specify it is the coded data.	B1
		Also allow 'the <u>coded data</u> has a PMCC close to 1'	
30.9 (c)	$\log a = 0.594$ or $\log b = 0.055$	Use of laws of logarithms or exponential rules to simplify. Can be implied by correct answer.	M1
	$a = 10^{0.594}$ or $b = 10^{0.055}$ $P = 3.93 \times 1.14^{t}$	Correct method for finding constants	M1
	$P = 3.93 \times 1.14^t$	Correct equation	A1
30.9 (d)	$P = 3.93 \times 1.14^{15}$	Substituting into equation found in (c)	M1
	= 28.05		
	Population $= 28100$	Correct answer	A1
30.9 (e)	It is extrapolation/the population cannot continue to increase exponentially without any limit.	Also allow 'it is outside the range of the data'	B1
	Total		8 marks