

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 34 Kinematics

Question	Answer	Extra information	Marks
	$40 \text{ km h}^{-1} = \frac{40 \times 1000}{60 \times 60}$	Converting units	B1
34.1	$= 11.11\dots \mathrm{m}\mathrm{s}^{-1}$ $s = ut + \frac{1}{2}at^{2}$	Attempting to use $s = ut + \frac{1}{2}at^2$	M1
	$= (11.1)6 + \frac{1}{2} \times 3 \times 6^2$		
	= 121 m	Correct answer (at least 3 s.f.)	A1
	Total		3 marks

OXFORD REVISE

Question	Answer	Extra information	Marks
34.2 (a)	v = u + at	Use of $v = u + at$	M1
	V = 0 + (-9.8)(5)		
5 1.2 (u)	= -49		
	Speed = 49 (m s ⁻¹)	Correct answer. Must be positive.	A1
	$s = ut + \frac{1}{2}at^2$	Use of $s = ut + \frac{1}{2}at^2$	M1
34.2 (b)	$= 0.5(-9.8)(5^2)$		
	= -122.5		
	Height of window is 123 (m)	Correct answer. Must be positive.	A1
	Total		4 marks
	$v^2 = u^2 + 2as$	Use of $v^2 = u^2 + 2as$	M1
	$0 = 6^2 - 19.6s$		
343(a)	$s = \frac{36}{36}$		
54.5 (u)	19.6		
	= 1.84 (m)		
	Height above ground is $1.84 + 2 = 3.84$ (m)	Correct answer	A1
	$s = ut + \frac{1}{2}at^2$		
3/3 (b)	$1 = 6t - 4.9t^2$	Forming a quadratic in t	M1
34.3 (b)	$4.9t^2 - 6t + 1 = 0$		
	t = 0.199, 1.025	Both values for <i>t</i>	A1
	Time above 3 m is $1.025 0.199 = 0.83$ (s)	Correct answer	A1
Oxford Revise ©	Oxford University Press 2024	ISBN 9781382057707	

Question	Answer	Extra information	Marks
	Total		5 marks
34.4 (a)	$\mathbf{v} = \mathbf{u} + \mathbf{a}t$		
	$\mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 3 \\ -4 \end{pmatrix}$	Forming a vector equation in column vectors or ij form	M1
	$\mathbf{v} = \begin{pmatrix} 10 \\ -11 \end{pmatrix} \text{ or } \mathbf{v} = 10\mathbf{i} - 11\mathbf{j}$	Either form accepted	A1
	Speed = $\sqrt{10^2 + 11^2}$		
	$=\sqrt{221}$		
	$= 14.9 \text{ (m s}^{-1})$	Correct answer only	A1
34.4 (b)	$s = ut + \frac{1}{2}at^2$		
	$\mathbf{s} = 6 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{2} \times 36 \times \begin{pmatrix} 3 \\ -4 \end{pmatrix}$	Forming a vector equation using $s = ut + \frac{1}{2}at^2$	M1
	$\mathbf{s} = \begin{pmatrix} 6\\6 \end{pmatrix} + \begin{pmatrix} 54\\-72 \end{pmatrix} = \begin{pmatrix} 60\\-66 \end{pmatrix}$		
	$ \begin{pmatrix} -2\\1 \end{pmatrix} + \begin{pmatrix} 60\\-66 \end{pmatrix} = \begin{pmatrix} 58\\-65 \end{pmatrix} $		
	Position of B is $58i - 65j$	Correct answer only	A1
	Total		5 marks

Question	Answer	Extra information	Marks
	v = u + at	Attempting to use $v = u + at$	M1
34.5	$k \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	Any correct equation	A1
	k = -4 + t $-k = 2 + 2t$		
	-(-4+t) = 2+2t	Use of ratio to achieve an equation in <i>t</i> only	M1
	4 - t = 2 + 2t		
	2 = 3t		A 1
	$t = \frac{-}{3}$ (s)	Correct answer only	AI
	Total		4 marks

Question	Answer	Extra information	Marks
	48 (To selection (s) 48 48 5 17 T Time (s)		
34.6	The motorbike accelerates for $\frac{48}{4} = 12$ seconds	Correct acceleration of motorbike	B1
	The car and the motorbike will have travelled the same distance at time T		
	Using area under the graph = distance travelled Car: 36 <i>T</i> Motorbike: $\frac{1}{2}(T-17+T-5) \times 48 = 24(2T-22)$	Forming an equation for the area under the graph for the car or the motorbike	M1
	36T = 24(2T - 22) 3T = 2(2T - 22) T = 44 (s)	Correct equation equating distance travelled by car and motorbike	M1
	It takes $44 - 5 = 39$ seconds for the motorbike to catch the car.	Correct answer	A1
	Total		4 marks

Question	Answer	Extra information	Marks
247(-)	The deceleration section takes $\frac{28}{2} = 14$ seconds	Use of $v = u + at$ or gradient of graph	B1
	(T 28 1) 1) 1) 1)	General trapezium shape	B1
	Image: Solution of the	Correct times on horizontal axis	B1
	The acceleration section takes $120 - 90 - 14 = 16$ seconds		
34.7 (b)	Acceleration = $\frac{28}{16}$ = 1.75 (m s ⁻²)	Use of gradient Correct answer only	M1 A1
34.7 (c)	ation mation matrix 1.75	Three horizontal line segments Correct values on acceleration axis	B1
	Time (s)		
	Total		7 marks

Question	Answer	Extra information	Marks
34.8 (a)	Deceleration section takes $2T$ seconds		B1
	Area under the graph = $12T + 3600 + 24T$	Expression for area	M1
	Distance travelled = area		
	7200 = 36T + 3600	Correct equation with <i>T</i> only	A1
	T = 10 (seconds)	Correct answer only	A1
24.8 (b)	Acceleration = $\frac{24}{10}$	Use of gradient or $v = u + at$	M1
34.8 (0)	$= 2.4 \text{ (m s}^{-1})$	Correct answer only	A1
	Total		6 marks
34.9 (a)	$\mathbf{v} = \int \mathbf{a} \mathrm{d}t = \left(\frac{4}{3}t^3 - t + c\right)\mathbf{i} + \left(t^2 + 3t + d\right)\mathbf{j}$	Attempting to integrate \mathbf{v} with respect to time. Condone omission of c and d for this mark.	M1
	When $t = 3$, $\mathbf{v} = 40\mathbf{i} + 8\mathbf{j}$		
	$40\mathbf{i} + 8\mathbf{j} = \left(\frac{4}{3}3^3 - 3 + c\right)\mathbf{i} + \left(3^2 + 9 + d\right)\mathbf{j}$	Method to evaluate integration constants	M1
	c = 7, d = -10		
	$\mathbf{v} = \left(\frac{4}{3}t^3 - t + 7\right)\mathbf{i} + \left(t^2 + 3t - 10\right)\mathbf{j}$	Correct answer only	A1
	When moving parallel to i , the j component of velocity is zero.		
34.9 (b)	$t^2 + 3t - 10 = 0$	Forming a quadratic in t	M1A1
	t = 2 (<i>t</i> must be positive)	Must discard $t = -5$ solution	A1
	Total		6 marks

Question	Answer	Extra information	Marks
34.10 (a)	When $t = 1$, $\mathbf{v} = 4\mathbf{i} + 8\mathbf{j} \implies \mathbf{v} = \sqrt{4^2 + 8^2}$ = $4\sqrt{5}$	Substitution of $t = 1$ and correct use of Pythagoras' theorem	M1
	$= 8.94 \text{ (m s}^{-1})$	Correct answer	A1
34.10 (b)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	Attempting to differentiate	M1
	$= (6t+1)\mathbf{i} + (-2)\mathbf{j}$	Correct answer	A1
34.10 (c)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t = \left(t^3 + \frac{t^2}{2} + c\right)\mathbf{i} + \left(10t - t^2 + d\right)\mathbf{j}$	Attempting to integrate \mathbf{v} with respect to time. Condone omission of c and d for this mark.	M1
	When $t = 1$, $1.5\mathbf{i} - 5\mathbf{j} = \left(1^3 + \frac{1^2}{2} + c\right)\mathbf{i} + \left(10 - 1^2 + d\right)\mathbf{j}$	Attempting to find constants of integration	M1
	c = 0, d = -14		
	When $t = 3$, $\mathbf{r} = \frac{63}{2}\mathbf{i} + 7\mathbf{j}$	Correct answer only	A1
	Total		7 marks