

Oxford Revise | Edexcel A Level Maths | Answers

- Method (M) marks are awarded for showing you know a method and have attempted to apply it.
- Accuracy (A) marks should only be awarded if the relevant M marks have been awarded.
- Unconditional accuracy (B) marks are awarded independently of M marks. They do not rely on method.
- The abbreviation **o.e.** means 'or equivalent (and appropriate)'.

Please note that:

- efficient use of advanced calculators is expected
- inexact numerical answers should be given to three significant figures unless the question states otherwise; values from statistical tables should be quoted in full
- when a value of g is required, it is taken as $g = 9.8 \text{ m s}^{-2}$ unless stated otherwise in the question.

Chapter 38 Moments

Question	Answer	Extra information	Marks
38.1 (a)	T_A T_B		
	$T_A + T_B = 100g$	Resolving vertically	M1A1
	M(A)	Attempting to take moments about any point on the platform	M1
	$20g(1) + 80g(0.5) = 2T_B$	Correct equation	A1
	$T_B = 30g = 294$ (N)	Correct T_B	A1
	$T_A = 70g = 686 $ (N)	Correct T_A	A1
38.1 (b)	The weight acts at the centre of the platform	Valid explanation	B1
	Total		7 marks

Question	Answer	Extra information	Marks
38.2 (a)	3.2m R_C A E A C A C A C C B D B D B D B D B D B D B D B D B D B D B D C A B D D B D D D B D D D D D D D D	Attempting to take moments about any point Correct equation	M1 A1 A1
38.2 (b)	The child's weight acts at a single point, E		B1
	Total		4 marks

Question	Answer	Extra information	Marks
38.3	C A A 50 N 5g 2g Let the distance of the centre of mass from A be x $50(3 \sin \alpha) = 5gx + 2g(3)$ x = 0.64 (m)	Attempting to take moments about <i>A</i> Correct equation Correct <i>x</i>	M1 A1 A1
	Total		3 marks
38.4 (a)(i)	R R C M R C M Z Og A F	Diagram with all forces	B1

Question	Answer	Extra information	Marks
38.4 (a)(ii)	As the wall is smooth, there is no frictional force at <i>B</i> , just the reaction force which acts perpendicular to the wall.	Valid explanation	B1
	$R = mg + 20g \tag{1}$	Resolving vertically	M1A1
	F = S	Resolving horizontally	M1A1
	Taking moments about A	Attempting to take moments	M1
20.4(1)	$mg (1 \cos 60) + 20g (1.5 \cos 60) = S (3 \sin 60)$	Correct equation	A1A1
38.4 (b)	$F = S = \frac{1}{4} \left(mg + 20g \right)$	Use of $F = \mu R$	M1
	$mg (1 \cos 60) + 20g (1.5 \cos 60) = S (3 \sin 60)$ $F = S = \frac{1}{4} (mg + 20g)$ $\frac{1}{2}mg + 15g = \frac{3\sqrt{3}}{8} (mg + 20g)$	Forming an equation in <i>m</i> only	M1
	m = 13.4 (kg)	Correct answer only	A1
	Total		12 marks

Question	Answer	Extra information	Marks
38.5	$S = \frac{S}{60g}$ $R = \frac{3}{5}$ $S = \frac{4}{5}$ $M(A)$		
	$10g(1\cos\theta) + 60g(x\cos\theta) = S(2\sin\theta)$	Taking moments about any point on the ladder	M1A1
	R = 70g $F = S$	Resolving vertically Resolving horizontally	M1A1 M1A1
	$S = \frac{1}{3}(70g)$	Use of $F = \mu R$	M1
	$S = \frac{1}{3}(70g)$ 6g + 36gx = $\frac{112}{3}g$	Forming an equation in <i>x</i> only	M1
	x = 0.87 (m)	Correct answer only	A1
	Total		9 marks

Question	Answer	Extra information	Marks
38.6 (a)	$\begin{array}{c} Y \\ A \\ 1.2 \\ C \\ \end{array} \\ \begin{array}{c} X \\ D \\ 1.2 \\ 45^{\circ} \\ T \\ 20g \end{array} \\ \begin{array}{c} B \\ B \\ 20g \end{array}$		
	Length AC is $\frac{6\sqrt{2}}{5} \times \cos 45^\circ = 1.2$ (m)	Use of trigonometry to find AC	M1
	$\mathbf{M}(A)$		
	$T(1.2\sin 45^\circ) = 20g(1.8)$	Taking moments about A	M1
	$T = 30g\sqrt{2} $ (N)	Correct simplification	A1

Question	Answer	Extra information	Marks
	$T\cos 45^\circ + Y = 20g$	Resolving vertically	M1A1
	$Y = 20g - 30g\sqrt{2}(\cos 45^\circ)$		
	Y = 10g downwards		
38.6 (b)	$T \sin 30^\circ = X$	Resolving horizontally	M1A1
	$X = 15g\sqrt{2}$		
	$\sqrt{(15\sqrt{2}g)^2 + (10g)^2}$ = $5\sqrt{22}g$ (N)	Use of Pythagoras' theorem to find the resultant force	M1
	$= 5\sqrt{22}g $ (N)	Correct answer	A1
	Total		9 marks
38.7 (a)	$\frac{1}{2}MgN \xrightarrow{R} \xrightarrow{3a} \xrightarrow{N} \xrightarrow{C} B$ $\frac{1}{2}MgN \xrightarrow{R} \xrightarrow{A} \xrightarrow{Mg} \xrightarrow{Mg}$ $M(A)$ $Mg(2a \cos a) = N(3a)$ $N = \frac{2Mg \cos \alpha}{3}$	Attempting to take moments about any point on the beam Correct moments equation Correct expression for <i>N</i> . Must be in α and <i>M</i> only.	M1 A1 A1

Question	Answer	Extra information	Marks
	$R + N\cos\alpha = Mg$	Resolving vertically	M1A1
	$\frac{1}{2}Mg = F + N\sin\alpha$	Resolving horizontally	M1A1
	$\frac{1}{2}Mg = F + N\sin\alpha$ $R = Mg - \frac{2Mg\cos^2\alpha}{3}$	Forming equation in <i>M</i> and α for <i>R</i>	M1
	$= Mg\left(\frac{3-2\cos^2\alpha}{3}\right)$		
38.7 (b)	2 3	Forming equation in <i>M</i> and α for <i>F</i>	M1
	$=\frac{Mg}{6}(3-4\sin\alpha\cos\alpha)$		
	$F \leq \mu R$	Use of $F \leq \mu R$ to form an inequality in <i>M</i> and α only	M1
	$\frac{Mg}{6}(3-4\sin\alpha\cos\alpha) \le \mu Mg\left(\frac{3-2\cos^2\alpha}{3}\right)$	Must be \leq not =	
	$\mu \leq \frac{3 - 2\sin 2\alpha}{2\left(3 - 2\cos^2 \alpha\right)}$	Correct conclusion correctly obtained	A1
	Total		11 marks

Question	Answer	Extra information	Marks
	R XN F θ 2g		
	$R = 2g\cos\theta + X\sin\theta$	Resolving perpendicular to the plane	M1A1
38.8 (a)	$X\cos\theta = F + 2g\sin\theta$	Resolving parallel to the plane	M1A1
	$\frac{4}{5}X - \frac{6g}{5} = 0.6\left(\frac{8g}{5} + \frac{3}{5}X\right)$	Use of $F = \mu R$ and solving for X	M1
	$\frac{4}{5}X - \frac{9}{25}X = \left(\frac{6}{5} + \frac{24}{25}\right)g$		
	$X = \frac{54g}{11} = 48.1 \text{ (N)}$	Correct answer	A1

Question	Answer	Extra information	Marks
	When the force <i>X</i> is removed, friction acts up the plane.		
	Force down the plane = $2g \sin \theta = 11.76$	Finding force down plane	M1
	$R = 2g\cos\theta = 15.68$	Correct R	M1
38.8 (b)	Maximum frictional force = $\mu R = 9.408$ 11.76 > 9.408	Use of μR	M1
	Therefore, the particle will accelerate down the plane.	Correct conclusion. Must see inequality or statement that force is greater than 9.408	A1
	Total		10 marks
29.0(-)	900g - T = 900(1.5)	Use of $F_{\text{res}} = ma$ in the direction of motion for the whole system	M1A1
38.9 (a)	T = 7470 (N)	Correct answer only	A1
38.9 (b)	300g - R = 300(1.5)	Use of $F_{res} = ma$ in the direction of motion for the passengers in the lift	M1A1
	R = 2490 (N)	Correct answer only	A1
38.9 (c)	If the lift travels upwards, the tension in the lift cable will increase.	Valid explanation	B1
	Total		7 marks